The Global Market for White Biotechnology 2024-2034

0

Published August 2023 | 410 pages, 64 tables, 48 figures | Download table of contents

Sustainable Biomanufacturing: How White Biotechnology Enables Green Chemistry

White biotechnology utilizes living cells like yeast, molds, microorganisms, and enzymes for renewable and sustainable production of fuels, chemicals, materials, and medicines.

Tools like metabolic engineering, fermentation, enzymatic biocatalysis, and directed evolution optimize microbial and plant biology to efficiently convert raw materials into value-added green products.

Key Benefits of White Biotechnology

  • Achieves high specificity under mild conditions with less waste vs conventional chemistry.
  • Enables renewable feedstocks like agricultural wastes and algae to be utilized.
  • Products are easily degraded and create less waste.
  • Consumes less energy and emits fewer greenhouse gases.

 

Major Host Organisms for Industrial Biotech

Engineered strains of:

  • Bacteria
  • Yeast
  • Algae
  • Fungi

Tailored metabolism converts sugars, waste lipids, and CO2 into target compounds like:

  • Ethanol
  • Organic acids
  • Biopolymers

 

Applications and End Products

White biotechnology enables sustainable production of:

  • Biofuels
  • Renewable chemicals
  • Bioplastics
  • Ingredients
  • Agriculture products
  • Cosmetics
  • Textiles

Key markets are driven by demand for greener alternatives but face challenges like regulations. Future outlook is positive.

Biomanufacturing Processes

From R&D to commercial scale, key bioprocessing considerations:

  • Batch vs continuous fermentation
  • Bioreactor design
  • Downstream separation
  • Process analytical techniques

 

Report contents include: 

  • Principles and tools of white biotechnology. Analysis of major host organisms - engineered bacteria, yeast, algae, fungi - used in industrial biotechnology. 
  • Key end product applications and markets. Markets covered include biofuels, renewable chemicals, bioplastics, ingredients, agriculture, cosmetics, textiles, and more. Analysis of market drivers, challenges, regulations, and outlook.
  • Insights into biomanufacturing processes and scale-up for commercialization. Batch vs continuous processing, bioreactors, downstream separation, and process analytical techniques.
  • Techno-economic analysis and market outlook.
  • Latest trends and future opportunities.
  • Global market revenues to 2034.
  • 182 company profiles spanning feedstock supply, biomanufacturing, and end-product companies. Analysis of  how startups, SMEs, and large corporations apply biotech across the value chain. Companies profiled include ÄIO, Ardra Bio, Bolt Threads, Cascade Biocatalysts, C16 Biosciences, Circe, Danimer Scientific, Debut Biotechnology, Fermelanta, Future Fields, Gingko Bioworks, Green Bioactives, HydGene Renewables, LanzaTech, Metabolic Explorer, Michroma, Modern Meadow,  Newlight Technologies, Novozymes, Onego Bio, Pearl Bio, Pivot Bio, Provectus Algae, Seminal Biosciences, Spiber, Succinity, Terra Bioindustries, Visolis, and Yali Bio.

 

The Global Market for White Biotechnology 2024-2034
The Global Market for White Biotechnology 2024-2034
PDF download.

The Global Market for White Biotechnology 2024-2034
The Global Market for White Biotechnology 2024-2034
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

1              RESEARCH METHODOLOGY         17

 

2              INTRODUCTION 18

  • 2.1          Definition            19
  • 2.2          Comparison with conventional processes              20
  • 2.3          Applications       21
  • 2.4          Advantages        22
  • 2.5          Sustainability     23
  • 2.6          White Biotechnology for the Circular Economy   24
    • 2.6.1      Agricultural Waste           24
    • 2.6.2      Forestry and Paper Waste            24
    • 2.6.3      Gas Fermentation            24
    • 2.6.4      Plastics Upcycling             25
    • 2.6.5      Wastewater Valorization              25

 

3              TECHNOLOGY ANALYSIS 26

  • 3.1          Production hosts              27
    • 3.1.1      Bacteria                27
    • 3.1.2      Yeast     28
    • 3.1.3      Fungi     29
    • 3.1.4      Marine 30
    • 3.1.5      Enzymes              31
    • 3.1.6      Photosynthetic organisms            33
  • 3.2          Biomanufacturing processes       34
    • 3.2.1      Batch biomanufacturing 35
    • 3.2.2      Continuous biomanufacturing    36
  • 3.3          Cell factories for biomanufacturing          37
  • 3.4          Synthetic Biology              39
    • 3.4.1      Overview            39
      • 3.4.1.1   Metabolic engineering  41
      • 3.4.1.2   DNA synthesis   42
      • 3.4.1.3   CRISPR  43
      • 3.4.1.4   Protein/Enzyme Engineering      46
      • 3.4.1.5   Smart bioprocessing       48
      • 3.4.1.6   Cell-free systems             49
      • 3.4.1.7   Chassis organisms            51
      • 3.4.1.8   Biomimetics       54
      • 3.4.1.9   Sustainable materials     55
    • 3.4.2      Robotics and automation             57
    • 3.4.3      Fermentation Processes 58
  • 3.5          Feedstocks         60
    • 3.5.1      C1 feedstocks    60
    • 3.5.2      C2 feedstocks    63
    • 3.5.3      Biological conversion of CO2       66
    • 3.5.4      Food processing wastes 70
    • 3.5.5      Lignocellulosic biomass 70
    • 3.5.6      Methane             72
    • 3.5.7      Municipal solid wastes  73
    • 3.5.8      Plastic wastes    74
    • 3.5.9      Plant oils              76
    • 3.5.10    Starch   76
    • 3.5.11    Sugars   78
    • 3.5.12    Used cooking oils              79
    • 3.5.13    Green hydrogen production        79
    • 3.5.14    Blue hydrogen production           81
  • 3.6          Blue biotechnology (Marine biotechnology)         84
    • 3.6.1      Cyanobacteria   85
    • 3.6.2      Algae     86
    • 3.6.3      Companies         86

 

4              MARKET ANALYSIS          87

  • 4.1          Market trends and drivers            87
  • 4.2          Industry challenges and constraints         90
  • 4.3          White biotechnology in the “bioeconomy             92
  • 4.4          SWOT analysis   93
  • 4.5          Market map       95
  • 4.6          Competitive landscape  97
  • 4.7          Main end-use markets  98
    • 4.7.1      Biofuels 99
      • 4.7.1.1   Solid Biofuels     100
      • 4.7.1.2   Liquid Biofuels  101
      • 4.7.1.3   Gaseous Biofuels             102
      • 4.7.1.4   Conventional Biofuels    103
      • 4.7.1.5   Advanced Biofuels           103
      • 4.7.1.6   Feedstocks         104
      • 4.7.1.7   Metabolic pathways       121
      • 4.7.1.8   Bioethanol          124
      • 4.7.1.9   Biodiesel              130
      • 4.7.1.10                Biogas   134
      • 4.7.1.11                Renewable diesel            138
      • 4.7.1.12                Biojet fuel           140
      • 4.7.1.13                Algal biofuels (blue biotech)        144
      • 4.7.1.14                Biohydrogen      148
      • 4.7.1.15                Biobutanol          151
      • 4.7.1.16                Bio-based methanol       153
      • 4.7.1.17                Bioisoprene        158
      • 4.7.1.18                Fatty Acid Esters               158
    • 4.7.2      Bio-based chemicals       159
      • 4.7.2.1   Alcohols               159
      • 4.7.2.2   Organic acids      161
      • 4.7.2.3   Enzymes              162
      • 4.7.2.4   Acetone               163
      • 4.7.2.5   Acetic acid           164
      • 4.7.2.6   Adipic acid           165
      • 4.7.2.7   Aldehydes          166
      • 4.7.2.8   Acrylic acid          168
      • 4.7.2.9   Bacterial cellulose            169
      • 4.7.2.10                Bio-BDO               170
      • 4.7.2.11                Bio-DME              171
      • 4.7.2.12                Biobased ethanol             172
      • 4.7.2.13                Dodecanedioic acid (DDDA)         173
      • 4.7.2.14                Ethylene              173
      • 4.7.2.15                3-Hydroxypropionic acid (3-HP) 174
      • 4.7.2.16                Itaconic acid       174
      • 4.7.2.17                Lactic acid (D-LA)             175
      • 4.7.2.18                Malonic acid       175
      • 4.7.2.19                Monoethylene glycol (MEG)       176
      • 4.7.2.20                Succinic acid (SA)             176
      • 4.7.2.21                Triglycerides       177
      • 4.7.2.22                Amino Acids       178
      • 4.7.2.23                Vitamins              180
      • 4.7.2.24                Other types        181
    • 4.7.3      Bioplastics and Biopolymers        182
      • 4.7.3.1   Polylactic acid (PLA)        184
      • 4.7.3.2   PHAs     186
      • 4.7.3.3   Bio-PET 196
      • 4.7.3.4   Starch blends     198
      • 4.7.3.5   Protein-based bioplastics             200
    • 4.7.4      Bioremediation 203
    • 4.7.5      Biocatalysis         205
      • 4.7.5.1   Biotransformations         206
      • 4.7.5.2   Cascade biocatalysis        206
      • 4.7.5.3   Co-factor recycling           207
      • 4.7.5.4   Immobilization  207
    • 4.7.6      Food and Nutraceutical Ingredients         208
      • 4.7.6.1   Alternative Proteins        209
      • 4.7.6.2   Natural Sweeteners        210
      • 4.7.6.3   Natural Flavors and Fragrances  211
      • 4.7.6.4   Texturants and Thickeners           211
      • 4.7.6.5   Nutraceuticals and Supplements               211
    • 4.7.7      Sustainable agriculture  212
      • 4.7.7.1   Biofertilizers       212
      • 4.7.7.2   Biopesticides     214
      • 4.7.7.3   Biostimulants     218
      • 4.7.7.4   Crop Biotechnology        221
    • 4.7.8      Textiles 224
      • 4.7.8.1   Bio-Based Fibers               225
      • 4.7.8.2   Recombinant Materials 228
      • 4.7.8.3   Sustainable Processing  230
    • 4.7.9      Pharmaceuticals               231
    • 4.7.10    Cosmetics           235
    • 4.7.11    Surfactants and detergents         237
    • 4.7.12    Cement 239
      • 4.7.12.1                Biocement          239
      • 4.7.12.2                Mycelium materials         240
  • 4.8          Global market revenues 2018-2034          241
    • 4.8.1      By market           242
    • 4.8.2      By region             243
  • 4.9          Future Market Outlook  244

 

5              COMPANY PROFILES       246

 

6              GLOSSARY           399

  • 6.1          Acronyms            399
  • 6.2          Terms   400

 

7              REFERENCES       402

 

List of Tables

  • Table 1. Biotechnology "colors". 17
  • Table 2. Differences between white biotechnology and conventional processes. 19
  • Table 3. Advantages of white biotechnology.       21
  • Table 4. Molecules produced through industrial biomanufacturing.           25
  • Table 5.  Major microbial cell factories used in industrial biomanufacturing.          36
  • Table 6. Core stages - Design, Build and Test.       38
  • Table 7. Products and applications enabled by synthetic biology. 39
  • Table 8. Engineered proteins in industrial applications.    45
  • Table 9. White biotechnology fermentation processes.   58
  • Table 10. CO2 derived products via biological conversion-applications, advantages and disadvantages.     67
  • Table 11. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        73
  • Table 12. Biomass processes summary, process description and TRL.         80
  • Table 13. Pathways for hydrogen production from biomass.          82
  • Table 14. Overview of alginate-description, properties, application and market size.          83
  • Table 15. Blue biotechnology companies.              85
  • Table 16. Market trends and drivers in white biotechnology.        86
  • Table 17.Industry challenges and restraints in white biotechnology.          89
  • Table 18. White biotechnology key application sectors and products.       97
  • Table 19. Comparison of biofuels.             98
  • Table 20. Categories and examples of solid biofuel.           100
  • Table 21. Comparison of biofuels and e-fuels to fossil and electricity.        103
  • Table 22. Classification of biomass feedstock.     103
  • Table 23. Biorefinery feedstocks.              104
  • Table 24. Feedstock conversion pathways.           105
  • Table 25. First-Generation Feedstocks.   105
  • Table 26.  Lignocellulosic ethanol plants and capacities.  108
  • Table 27. Comparison of pulping and biorefinery lignins. 109
  • Table 28. Commercial and pre-commercial biorefinery lignin production facilities and  processes 110
  • Table 29. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.  112
  • Table 30. Properties of microalgae and macroalgae.         114
  • Table 31. Yield of algae and other biodiesel crops.             115
  • Table 32. Biofuels made from white biotechnology.          121
  • Table 33.  Processes in bioethanol production.  127
  • Table 34. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.           129
  • Table 35. Biodiesel by generation.            130
  • Table 36. Biodiesel production techniques.          132
  • Table 37. Biofuel production cost from the biomass pyrolysis process.      132
  • Table 38. Biogas feedstocks.       136
  • Table 39. Advantages and disadvantages of Bio-aviation fuel.       139
  • Table 40. Production pathways for Bio-aviation fuel.        140
  • Table 41. Current and announced Bio-aviation fuel facilities and capacities.           142
  • Table 42. Algae-derived biofuel producers.           146
  • Table 43. Markets and applications for biohydrogen.       147
  • Table 44. Comparison of different Bio-H2 production pathways. 148
  • Table 45. Comparison of biogas, biomethane and natural gas.      154
  • Table 46. Biobased MEG producers capacities.    175
  • Table 47. Other types of bio-based chemicals.     180
  • Table 48. Bioplastics and bioplastic precursors synthesized via white biotechnology.         181
  • Table 49. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               183
  • Table 50. PLA producers and production capacities.          184
  • Table 51.Types of PHAs and properties. 188
  • Table 52. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 190
  • Table 53. Polyhydroxyalkanoate (PHA) extraction methods.          192
  • Table 54. Commercially available PHAs.  194
  • Table 55. Types of protein based-bioplastics, applications and companies.             199
  • Table 56. Applications of white biotechnology in bioremediation and environmental remediation.              202
  • Table 57. Biofertilizer companies.             212
  • Table 57. Biopesticides companies.          215
  • Table 57. Biostimulants companies.         218
  • Table 57. Crop biotechnology companies.             222
  • Table 58. Pharmaceutical applications of white biotechnology.    231
  • Table 59. Applications of white biotechnology in the cosmetics industry. 234
  • Table 60. Sustainable biomanufacturing of surfactants and detergents.   236
  • Table 61. Global revenues for white biotechnology, by market, 2018-2034 (Billion USD).  241
  • Table 62. Global revenues for white biotechnology, by region, 2018-2034 (Billion USD).   242
  • Table 63. White biotechnology Glossary of Acronyms.     397
  • Table 64. White biotechnology Glossary of Terms.             398

 

List of Figures

  • Figure 1. CRISPR/Cas9 & Targeted Genome Editing.          44
  • Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering.   47
  • Figure 3. Cell-free and cell-based protein synthesis systems.        49
  • Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.            51
  • Figure 5. LanzaTech gas-fermentation process.   66
  • Figure 6. Schematic of biological CO2 conversion into e-fuels.      67
  • Figure 7. BLOOM masterbatch from Algix.             84
  • Figure 8. SWOT analysis: white biotechnology.    93
  • Figure 9. Market map: white biotechnology.        95
  • Figure 10.  Schematic of a biorefinery for production of carriers and chemicals.    110
  • Figure 11. Hydrolytic lignin powder.        113
  • Figure 12. Range of biomass cost by feedstock type.        118
  • Figure 13. Overview of biogas utilization.               134
  • Figure 14. Biogas and biomethane pathways.      135
  • Figure 15. Schematic overview of anaerobic digestion process for biomethane production.            137
  • Figure 16. Algal biomass conversion process for biofuel production.          144
  • Figure 17.  Pathways for algal biomass conversion to biofuels.     147
  • Figure 18. Properties of petrol and biobutanol.   151
  • Figure 19. Biobutanol production route. 151
  • Figure 20. Renewable Methanol Production Processes from Different Feedstocks.              154
  • Figure 21. Production of biomethane through anaerobic digestion and upgrading.              155
  • Figure 22. Production of biomethane through biomass gasification and methanation.       156
  • Figure 23. Production of biomethane through the Power to methane process.     157
  • Figure 24. Overview of Toray process. Overview of process           165
  • Figure 25. Potential industrial uses of 3-hydroxypropanoic acid.  173
  • Figure 26. PHA family.    188
  • Figure 27. Bold Cultr from General Mills.                209
  • Figure 28. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         226
  • Figure 29. BioMason cement.     238
  • Figure 30. Microalgae based biocement masonry bloc.    239
  • Figure 31. Typical structure of mycelium-based foam.     239
  • Figure 32. Commercial mycelium composite construction materials.          240
  • Figure 33. Global revenues for white biotechnology, by market, 2018-2034 (Billion USD). 241
  • Figure 34. Global revenues for white biotechnology, by region, 2018-2034 (Billion USD).  243
  • Figure 35. Algiknit yarn. 250
  • Figure 36. BIOLO e-commerce mailer bag made from PHA.            265
  • Figure 37. Domsjö process.          292
  • Figure 38. PHA production process.         306
  • Figure 39. Loam Bio microbes.    323
  • Figure 40. TransLeather.               326
  • Figure 41. Reishi.              338
  • Figure 42. Compostable water pod.         348
  • Figure 43.  Precision Photosynthesis™ technology.            361
  • Figure 44. Enfinity cellulosic ethanol technology process.               363
  • Figure 45. Lyocell process.           371
  • Figure 46. Spider silk production.              376
  • Figure 47. Corbion FDCA production process.      386
  • Figure 48. The Proesa® Process. 391

The Global Market for White Biotechnology 2024-2034
The Global Market for White Biotechnology 2024-2034
PDF download.

The Global Market for White Biotechnology 2024-2034
The Global Market for White Biotechnology 2024-2034
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

Share.

Comments are closed.