The Global Market for Recyclable Packaging 2024-2034

0

 

Plastics consumption continues to steeply increase worldwide, while resultant waste is currently mostly landfilled, discarded to the environment, or incinerated.  Developments in mechanical and chemical recycling technology are changing the shape of the plastics industry and advanced materials and technologies are impacting glass, paper and metal recycling sectors. It’s becoming increasingly possible to recover more materials in a closed-loop, helping to retain maximum value.

The Global Market for Recyclable Packaging 2024-2034 examines recyclable packaging across paper, plastics, glass, and metals, including market size, drivers, applications, technologies, companies, sustainability, and future outlook. The markets is segmented by region and material type, quantitative forecasts are provided through 2034.

Landscape analysis covers major brands, packaging manufacturers, waste management firms, and recycling technology innovators driving circularity. Technical processes are explained across mechanical and chemical recycling, sorting, and reprocessing. Packaging innovations in bio-based materials, smart packaging, and reusable models are highlighted. The report also examines adjacent spaces like e-commerce fulfillment and policy landscapes shaping recyclable packaging. Report contents include:

  • Recyclable Packaging Industry Overview
    • Markets, processes, technologies
    • Drivers and trends shaping growth
  • Plastics Recycling Analysis
    • Mechanical and chemical recycling overview
    • Polymer demand forecasts by process
    • Pyrolysis, gasification, depolymerization techs
    • Bio-based and marine degradable plastics
    • Market challenges and innovations
  • Paper Packaging Recycling Analysis
    • Market size, processes, economics
    • Fiber sources, strength improvements
    • Compostable solutions, active packaging
    • Industry challenges and future outlook
  • Glass Packaging Recycling Analysis
    • Market size, suppliers, collection economics
    • Processing methods, end-use applications
    • Smart glass, hybrids, material advances
    • Participation challenges and opportunities
  • Metal Packaging Recycling Analysis
    • Market size, processes, economics
    • Aluminium, steel, and hybrid innovations
    • Active and smart metal packaging
    • Benefits driving growth and adoption
  • Digital Technologies Analysis
    • Blockchain, IoT, AI applications
    • Digital watermarking for advanced recycling
  • Markets and Applications Analysis
    • Food, beverages, CPG, retail, e-commerce
    • Industrial packaging, healthcare, automotive
  • Competitive Landscape
    • Profiles of 248 companies. Companies profiled include Aduro Clean Technologies, Agilyx, Alterra, Amsty, APK AG, Aquafil, Arcus, Axens, BASF Chemcycling, BiologiQ, Carbios, DePoly,  Dow, Eastman Chemical, EREMA Group GmbH, Extracthive, ExxonMobil, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical, Ioniqa, Itero, Licella, Mura Technology, Neste, Plastic Energy, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SABIC, Samsara ECO, Synova, TOMRA Recycling, and Waste Robotics.  
  • Market Size and Forecasts
    • Regional and material type segmentation
    • Revenue and volume projections through 2034
  • Sustainability Analysis
    • Circularity, carbon footprint, and life cycle assessment
    • Energy use, water conservation, and social factors

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

 

View full table of contents (pdf)

1              RESEARCH METHODOLOGY         23

 

2              INTRODUCTION 25

  • 2.1          Recycling Process             25
  • 2.2          Benefits               26
  • 2.3          Types of Recyclable Packaging    28
    • 2.3.1      Paper & Cardboard          28
    • 2.3.2      Glass     29
    • 2.3.3      Aluminium           30
    • 2.3.4      Steel      31
    • 2.3.5      Plastics 32
  • 2.4          Recycling Rates 33
  • 2.5          Barriers to Recycling       34
  • 2.6          Market landscape            35
  • 2.7          Waste plastics value chain            37
  • 2.8          Key industry players        39
    • 2.8.1      Material Suppliers           39
    • 2.8.2      Packaging & Equipment 40
    • 2.8.3      Consumer Brands            41
    • 2.8.4      Waste & Recycling           43
  • 2.9          Market drivers  45
    • 2.9.1      Circular Economy             45
    • 2.9.2      Waste Reduction              47
    • 2.9.3      Legislation           47
      • 2.9.3.1   EU          48
      • 2.9.3.2   United States     49
      • 2.9.3.3   Asia/Pacific         51
    • 2.9.4      Corporate Sustainability Commitments  53
    • 2.9.5      Consumer Sentiment     53
  • 2.10        Challenges          55
  • 2.11        Future market outlook   57
    • 2.11.1    Mainstream Eco-Packaging          57
    • 2.11.2    Digitized Supply Chains  58
    • 2.11.3    Advanced Materials Recovery    59
    • 2.11.4    Dematerialized Delivery 60
    • 2.11.5    Integrated Policy Frameworks    61
    • 2.11.6    Sustainable Materials     62
    • 2.11.7    Behavioural Transformation        63

 

3              PLASTICS PACKAGING RECYCLING             64

  • 3.1          Global production of plastics       64
  • 3.2          The importance of plastic              65
  • 3.3          Issues with plastics use  65
  • 3.4          Plastic pollution 66
  • 3.5          Mechanical vs. Chemical Recycling            68
  • 3.6          Polymers used in packaging applications 69
    • 3.6.1      Polyethylene terephthalate (PET)             69
    • 3.6.2      Polyethylene     70
      • 3.6.2.1   Low density and linear low density polyethylene LDPE/ (LDPE)    70
      • 3.6.2.2   High density Polyethylene (HDPE)            71
    • 3.6.3   Polypropylene (PP)         72
    • 3.6.4   Polyamides (PA)               73
    • 3.6.5   Polyvinyl chloride (PVC) 74
    • 3.6.6   Cyclic olefin copolymers (COC)   75
    • 3.6.7   Polystyrene (PS)               76
    • 3.6.8   Thermoplastic elastomers            77
  • 3.7          Global polymer demand 2022-2040, segmented by recycling technology 77
    • 3.7.1      PE           77
    • 3.7.2      PP           78
    • 3.7.3      PET         80
    • 3.7.4      PS           82
    • 3.7.5      Nylon    83
    • 3.7.6      Others  84
  • 3.8          Global polymer demand 2022-2040, segmented by recycling technology, by region            86
    • 3.8.1      Europe 86
    • 3.8.2      North America   87
    • 3.8.3      South America   88
    • 3.8.4      Asia        90
    • 3.8.5      Oceania                91
    • 3.8.6      Africa    92
  • 3.9          Thermoplastics recycling processes         94
  • 3.10        Vulcanized elastomers recycling processes           95
  • 3.11        Mechanical recycling      97
    • 3.11.1    Processes            97
    • 3.11.2    Closed-loop mechanical recycling              98
    • 3.11.3    Open-loop mechanical recycling 98
    • 3.11.4    Polymer types, use, and recovery             98
    • 3.11.5    Life cycle assessment     100
    • 3.11.6    Market trends   100
    • 3.11.7    Global mechanical recycling capacity       102
      • 3.11.7.1                Producers           102
      • 3.11.7.2                By region             104
    • 3.11.8    Common plastics recycled            105
      • 3.11.8.1                PET         107
      • 3.11.8.2                HDPE     108
      • 3.11.8.3                LDPE      109
      • 3.11.8.4                PP           110
      • 3.11.8.5                PVC        111
      • 3.11.8.6                PS           112
    • 3.11.9    Optical and sensor technologies 114
      • 3.11.9.1                Near-infrared (NIR) sensors         114
      • 3.11.9.2                Mid-infrared (MIR) sensors         115
      • 3.11.9.3                Hyperspectral imaging   116
      • 3.11.9.4                Optical sorting   117
      • 3.11.9.5                Metal detectors 118
      • 3.11.9.6                X-ray detectors 119
      • 3.11.9.7                Melt Indexers   120
      • 3.11.9.8                Colorimeters      121
  • 3.12        Advanced Chemical Recycling     122
    • 3.12.1    Capacities            122
    • 3.12.2    Chemically recycled plastic products        125
    • 3.12.3    Market map       126
    • 3.12.4    Value chain         128
    • 3.12.5    Life Cycle Assessment (LCA)        129
    • 3.12.6    Plastic yield of each chemical recycling technologies        130
    • 3.12.7    Prices    130
    • 3.12.8    Market challenges           131
    • 3.12.9    Technologies     132
      • 3.12.9.1                Applications       132
      • 3.12.9.2                Pyrolysis              133
        • 3.12.9.2.1             Non-catalytic     134
        • 3.12.9.2.2             Catalytic               135
          • 3.12.9.2.2.1         Polystyrene pyrolysis     138
          • 3.12.9.2.2.2         Pyrolysis for production of bio fuel           138
        • 3.12.9.2.3             Used tires pyrolysis         142
          • 3.12.9.2.3.1         Conversion to biofuel     143
          • 3.12.9.2.4             Co-pyrolysis of biomass and plastic wastes           144
      • 3.12.9.3                Gasification        145
        • 3.12.9.3.1             Technology overview     145
          • 3.12.9.3.1.1         Syngas conversion to methanol 146
          • 3.12.9.3.1.2         Biomass gasification and syngas fermentation    150
          • 3.12.9.3.1.3         Biomass gasification and syngas thermochemical conversion        150
        • 3.12.9.3.2             Companies and capacities (current and planned)               151
      • 3.12.9.4                Dissolution          152
        • 3.12.9.4.1             Technology overview     152
        • 3.12.9.4.2             Companies and capacities (current and planned)               153
      • 3.12.9.5                Depolymerisation            154
        • 3.12.9.5.1             Hydrolysis           157
          • 3.12.9.5.1.1         Technology overview     157
        • 3.12.9.5.2             Enzymolysis        158
          • 3.12.9.5.2.1         Technology overview     158
        • 3.12.9.5.3             Methanolysis     159
          • 3.12.9.5.3.1         Technology overview     159
        • 3.12.9.5.4             Glycolysis            161
          • 3.12.9.5.4.1         Technology overview     161
        • 3.12.9.5.5             Aminolysis          163
          • 3.12.9.5.5.1         Technology overview     163
          • 3.12.9.5.5.2         Companies and capacities (current and planned)               164
      • 3.12.9.6                Other advanced chemical recycling technologies 165
        • 3.12.9.6.1             Hydrothermal cracking   165
        • 3.12.9.6.2             Pyrolysis with in-line reforming  166
        • 3.12.9.6.3             Microwave-assisted pyrolysis     167
        • 3.12.9.6.4             Plasma pyrolysis               167
        • 3.12.9.6.5             Plasma gasification          168
        • 3.12.9.6.6             Supercritical fluids           169
  • 3.13        Bio-plastics         170
    • 3.13.1    Bio-based or renewable plastics 170
      • 3.13.1.1                Drop-in bio-based plastics            170
      • 3.13.1.2                Novel bio-based plastics                171
    • 3.13.2    Biodegradable and compostable plastics                172
      • 3.13.2.1                Biodegradability               173
      • 3.13.2.2                Compostability  174
    • 3.13.3                Polylactic acid (Bio-PLA) 175
    • 3.13.4                Polyethylene terephthalate (Bio-PET)     176
    • 3.13.5                Polytrimethylene terephthalate (Bio-PTT)             178
    • 3.13.6                Polyethylene furanoate (Bio-PEF)             178
    • 3.13.7                Polyamides (Bio-PA)       180
    • 3.13.8                Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        182
    • 3.13.9                Polybutylene succinate (PBS) and copolymers     183
    • 3.13.10              Polyethylene (Bio-PE)    184
    • 3.13.11              Polypropylene (Bio-PP) 184
    • 3.13.12              Polyhydroxyalkanoates (PHA)     185
      • 3.13.12.1          Types    187
        • 3.13.12.1.1       PHB        189
        • 3.13.12.1.2       PHBV     189
      • 3.13.12.2          Synthesis and production processes        191
      • 3.13.12.3          Commercially available PHAs      194
  • 3.14        Marine Degradable         196
  • 3.15        Smart & Active Packaging             197
    • 3.15.1    Sensors 197
    • 3.15.2    RFID tags             199
    • 3.15.3    Oxygen scavengers         200
    • 3.15.4    Antimicrobial surfaces   203
    • 3.15.5    Moisture Regulators       206
  • 3.16        Reuse Models   207
  • 3.17        Circular Design  210

 

4              PAPER PACKAGING RECYCLING  212

  • 4.1          Market overview             212
    • 4.1.1      Global market size           212
    • 4.1.2      Supply  214
    • 4.1.3      Demand drivers 215
    • 4.1.4      Prices    216
    • 4.1.5      Economics           217
    • 4.1.6      Global processing capacity           218
  • 4.2          Paper Packaging Types  220
  • 4.3          Paper Packaging Recycling Process           221
  • 4.4          Benefits of Paper Recycling          223
  • 4.5          Issues Hampering Recycling         224
  • 4.6          Renewable Materials     225
    • 4.6.1      Bagasse 225
    • 4.6.2      Bamboo               226
    • 4.6.3      Flax        227
    • 4.6.4      Mycelium            228
    • 4.6.5      Nano-fibrillated cellulose (NFC) 230
    • 4.6.6      Micro-fibrillated cellulose (MFC)               232
  • 4.7          Compostable Packaging 233
    • 4.7.1      PLA Lining            233
    • 4.7.2      Molded Fiber     234
    • 4.7.3      Coated Papers   235
    • 4.7.4      PLA liners            236
    • 4.7.5      Molded fiber      238
  • 4.8          Active & Intelligent Packaging     239
  • 4.9          Strength Improvements 241
    • 4.9.1      Nanocellulose   241
    • 4.9.2      Synthetic Binders             242
    • 4.9.3      3D Molded Fiber              243
    • 4.9.4      Mineral additives             244
  • 4.10        Circular Design  246
    • 4.10.1    Mono-material packaging             246
    • 4.10.2    Water-based Coatings   249
    • 4.10.3    Smart Dyes         250
    • 4.10.4    Digital watermarking      251
  • 4.11        Other technologies         252
    • 4.11.1    Robotics               252
    • 4.11.2    Enzymatic pretreatment               253
    • 4.11.3    Membrane filtration       254
    • 4.11.4    Black liquor valorization 256
    • 4.11.5    Pressurized hot water extraction               256
  • 4.12        Market Challenges          258

 

5              GLASS PACKAGING RECYCLING  261

  • 5.1          Market overview             261
    • 5.1.1      Global market size           261
    • 5.1.2      Supply  263
    • 5.1.3      Demand drivers 263
    • 5.1.4      Prices    264
    • 5.1.5      Economics           266
    • 5.1.6      Global processing capacity           267
  • 5.2          Glass Packaging Recycling Process            268
  • 5.3          Benefits of Glass Recycling           271
  • 5.4          Participation Challenges 272
  • 5.5          Use of Recycled Glass     273
  • 5.6          Lightweighting  274
  • 5.7          Active & Smart  275
  • 5.8          Reuse Models   276
  • 5.9          Cullet Processing              277
    • 5.9.1      Advanced optical sorting for cullet purification    277
    • 5.9.2      Decoating technologies 278
  • 5.10        Other materials and technologies             281
    • 5.10.1    Optical sorters  281
    • 5.10.2    Glass foams        282
    • 5.10.3    Bioglass 282
    • 5.10.4    Glass-polymer hybrids   283
    • 5.10.5    Digital watermarking      284
  • 5.11        Market Challenges          285
  • 5.12        Future Opportunities     286

 

6              METALS PACKAGING RECYCLING               288

  • 6.1          Market overview             288
    • 6.1.1      Global market size           288
    • 6.1.2      Supply  290
    • 6.1.3      Demand drivers 291
    • 6.1.4      Prices    292
    • 6.1.5      Economics           293
    • 6.1.6      Global processing capacity           294
  • 6.2          Metal Packaging Recycling Process           296
  • 6.3          Benefits of Glass Recycling           298
  • 6.4          Innovation          300
    • 6.4.1      Aluminium           300
    • 6.4.2      Steel      302
    • 6.4.3      Active & Smart Packaging             304
    • 6.4.4      Hybrid Packaging              307

 

7              DIGITAL TECHNOLOGIES 309

  • 7.1          Blockchain for Circularity               309
  • 7.2          Internet of Things (IoT)  310
  • 7.3          Artificial Intelligence       311
  • 7.4          Digital Watermarks         312

 

8              MARKETS AND APPLICATIONS    315

  • 8.1          Food Packaging 315
  • 8.2          Beverage Packaging        317
  • 8.3          Personal Care & Household Products      319
  • 8.4          Retail & E-Commerce Packaging 321
    • 8.4.1      Primary Packaging           322
    • 8.4.2      Secondary Packaging      324
    • 8.4.3      Tertiary Packaging           325
  • 8.5          Industrial Packaging        326

 

9              GLOBAL MARKET 2018-2034         327

  • 9.1          End use applications for global recyclate 2022      328
  • 9.2          By revenues       328
  • 9.3          By material         330
  • 9.4          By region             331
    • 9.4.1          Asia Pacific          332
    • 9.4.2          North America   332
    • 9.4.3          Europe 332
    • 9.4.4          South America   332

 

10           COMPANY PROFILES       333 (249 company profiles)

 

11           REFERENCES       553

 

List of Tables

  • Table 1. Key benefits driving adoption of recyclable packaging solutions. 26
  • Table 2. Global Recycling Rates. 33
  • Table 3. Key factors limiting real-world recycling rates.    34
  • Table 4. Recyclable packaging market landscape.               35
  • Table 5. Waste plastics value chain.          37
  • Table 6. Material suppliers.         39
  • Table 7. Packaging & equipment companies.       40
  • Table 8. Consumer brands.          41
  • Table 9. Waste & Recycling companies.  43
  • Table 10. Market challenges in recyclable packaging.        55
  • Table 11. Issues related to the use of plastics.      65
  • Table 12. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tons).   77
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tons).   78
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tons). 80
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tons).   82
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tons).             83
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tons).*                84
  • Table 18. Global polymer demand in Europe, by recycling technology 2022-2040 (million tons).   86
  • Table 19. Global polymer demand in North America, by recycling technology 2022-2040 (million tons).     87
  • Table 20. Global polymer demand in South America, by recycling technology 2022-2040 (million tons).     88
  • Table 21. Global polymer demand in Asia, by recycling technology 2022-2040 (million tons).          90
  • Table 22. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tons).  91
  • Table 23. Global polymer demand in Africa, by recycling technology 2022-2040 (million tons).      92
  • Table 24.  Key processes involved in the mechanical recycling of plastics. 97
  • Table 25. Polymer types, use, and recovery.         98
  • Table 26. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling. 100
  • Table 27. Market trends in mechanical recycling.                100
  • Table 28. Mechanical plastic recycling capacities, by producer, current and planned (metric tons).              102
  • Table 29. Global mechanical recycling capacity by region 2018-2034 (million metric tons).              104
  • Table 30. Recyclable Plastic Types.           106
  • Table 31. Advanced plastics recycling capacities, by technology. 122
  • Table 32. Example chemically recycled plastic products.  125
  • Table 33. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.            129
  • Table 34. Plastic yield of each chemical recycling technologies.    130
  • Table 35. Chemically recycled plastics prices in USD.         131
  • Table 36. Challenges in the advanced chemical recycling market. 131
  • Table 37. Applications of chemically recycled materials.  132
  • Table 38. Summary of non-catalytic pyrolysis technologies.           135
  • Table 39. Summary of catalytic pyrolysis technologies.    136
  • Table 40. Summary of pyrolysis technique under different operating conditions. 140
  • Table 41. Biomass materials and their bio-oil yield.            141
  • Table 42. Biofuel production cost from the biomass pyrolysis process.      142
  • Table 43. Summary of gasification technologies. 145
  • Table 44. Advanced recycling (Gasification) companies.  151
  • Table 45. Summary of dissolution technologies. 152
  • Table 46. Advanced recycling (Dissolution) companies     153
  • Table 47. Depolymerisation processes for PET, PU, PC and PA, products and yields.            156
  • Table 48. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        157
  • Table 49. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        158
  • Table 50. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        159
  • Table 51. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        161
  • Table 52. Summary of aminolysis technologies.  163
  • Table 53. Advanced recycling (Depolymerisation) companies and capacities (current and planned).            164
  • Table 54. Overview of hydrothermal cracking for advanced chemical recycling.     165
  • Table 55. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.    166
  • Table 56. Overview of microwave-assisted pyrolysis for advanced chemical recycling.        167
  • Table 57. Overview of plasma pyrolysis for advanced chemical recycling. 167
  • Table 58. Overview of plasma gasification for advanced chemical recycling.            168
  • Table 59. Type of biodegradation.            173
  • Table 60. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               175
  • Table 61. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              177
  • Table 62. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       178
  • Table 63. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                179
  • Table 64. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                180
  • Table 65. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              182
  • Table 66. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       183
  • Table 67. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                184
  • Table 68. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        184
  • Table 69.Types of PHAs and properties. 188
  • Table 70. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 190
  • Table 71. Polyhydroxyalkanoate (PHA) extraction methods.          192
  • Table 72. Commercially available PHAs.  194
  • Table 73. Global paper packaging recycling market, 2018-2034 (million tonnes).  213
  • Table 74. Global paper packaging recycling processing capacity million tons, 2022.              218
  • Table 75. Major paper packaging formats.             220
  • Table 76. Benefits of Paper Recycling.     223
  • Table 77. Overview of mycelium fibers-description, properties, drawbacks and applications.          228
  • Table 78. Companies developing mycelium-based bioplastics.      229
  • Table 79. Paper Recycling Challenges.     258
  • Table 80. Global glass packaging recycling market, 2018-2034 (million tonnes).    262
  • Table 81. Global glass packaging recycling processing capacity million tons, 2022.                267
  • Table 82. Benefits of Glass Recycling.       271
  • Table 83. Applications of recycled glass. 273
  • Table 84. Glass Recycling Challenges.      285
  • Table 85. Global metal packaging recycling market, 2018-2034 (million tonnes).  289
  • Table 86. Global metal packaging recycling processing capacity million tons, 2022.              295
  • Table 87. Benefits of Metal Packaging Recycling. 298
  • Table 88. Global Recyclable Packaging Market 2018-2034 (billions USD). 328
  • Table 89. Global Recyclable Packaging Market 2018-2034 (million tonnes), segmented by materials.          330
  • Table 90. Global Recyclable Packaging Market 2018-2034 (million tonnes), segmented by materials.          331

 

 

List of Figures

  • Figure 1. Recycling process for recyclable packaging.        25
  • Figure 2. Global plastics production 1950-2021, millions of tons. 64
  • Figure 3. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          66
  • Figure 4. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tons).    77
  • Figure 5. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tons).    79
  • Figure 6. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tons).  80
  • Figure 7. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tons).    82
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tons).              83
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tons).  85
  • Figure 10. Global polymer demand in Europe, by recycling technology 2022-2040 (million tons).  86
  • Figure 11. Global polymer demand in North America, by recycling technology 2022-2040 (million tons).   87
  • Figure 12. Global polymer demand in South America, by recycling technology 2022-2040 (million tons).   89
  • Figure 13. Global polymer demand in Asia, by recycling technology 2022-2040 (million tons).        90
  • Figure 14. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tons). 91
  • Figure 15. Global polymer demand in Africa, by recycling technology 2022-2040 (million tons).     92
  • Figure 16. Global mechanical recycling capacity by region 2018-2034 (million metric tons).             103
  • Figure 17. Market map for advanced plastics recycling.    127
  • Figure 18. Value chain for advanced plastics recycling market.     128
  • Figure 19. Schematic layout of a pyrolysis plant. 133
  • Figure 20. Waste plastic production pathways to (A) diesel and (B) gasoline           138
  • Figure 21. Schematic for Pyrolysis of Scrap Tires. 142
  • Figure 22. Used tires conversion process.              143
  • Figure 23. Total syngas market by product in MM Nm³/h of Syngas, 2021.               146
  • Figure 24. Overview of biogas utilization.               147
  • Figure 25. Biogas and biomethane pathways.      148
  • Figure 26. Products obtained through the different solvolysis pathways of PET, PU, and PA.            154
  • Figure 27.  Coca-Cola PlantBottle®.           170
  • Figure 28. Interrelationship between conventional, bio-based and biodegradable plastics.              171
  • Figure 29. PHA family.    187
  • Figure 30. Global paper packaging recycling market, 2018-2034 (million tonnes). 213
  • Figure 31. Paper recycling process.           221
  • Figure 32. Typical structure of mycelium-based foam.     228
  • Figure 33. Global glass packaging recycling market, 2018-2034 (million tonnes).  261
  • Figure 34. Glass Packaging Recycling.       269
  • Figure 35. Global metal packaging recycling market, 2018-2034 (million tonnes). 289
  • Figure 36. End use applications for global recyclate 2022.               327
  • Figure 37. Global Recyclable Packaging Market 2018-2034 (billions USD). 328
  • Figure 38. Global Recyclable Packaging Market 2018-2034 (million tonnes), segmented by materials.        330
  • Figure 39. Global Recyclable Packaging Market 2018-2034 (million tonnes), segmented by materials.        331
  • Figure 40. Pluumo.          334
  • Figure 41. NewCycling process.  345
  • Figure 42. ChemCyclingTM prototypes.  353
  • Figure 43. ChemCycling circle by BASF.   354
  • Figure 44. Recycled carbon fibers obtained through the R3FIBER process.               355
  • Figure 45. BIOLO e-commerce mailer bag made from PHA.            359
  • Figure 46. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 360
  • Figure 47. Cassandra Oil  process.             375
  • Figure 48. CuanSave film.             387
  • Figure 49. CuRe Technology process.       388
  • Figure 50. PHA production process.         412
  • Figure 51. MoReTec.      446
  • Figure 52. Chemical decomposition process of polyurethane foam.           452
  • Figure 53. Compostable water pod.         467
  • Figure 54. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 481
  • Figure 55. XCNF.               500
  • Figure 56. Easy-tear film material from recycled material.              503
  • Figure 57. Polyester fabric made from recycled monomers.          506
  • Figure 58. Hansa lignin.  509
  • Figure 59. Sulapac cosmetics containers.               522
  • Figure 60.  Sulzer equipment for PLA polymerization processing. 523
  • Figure 61. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    525
  • Figure 62. Teijin Frontier Co., Ltd. Depolymerisation process.       530
  • Figure 63. UPM biorefinery process.        539
  • Figure 64. The Velocys process. 543
  • Figure 65. The Proesa® Process. 546
  • Figure 66. Worn Again products.               549

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Global Market for Recyclable Packaging 2024-2034
The Global Market for Recyclable Packaging 2024-2034
PDF download.

The Global Market for Recyclable Packaging 2024-2034
The Global Market for Recyclable Packaging 2024-2034
PDF and hard copy (price includes tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

Share.

Comments are closed.