The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031

0

Published April 22 2021,  350 pages, 81 tables, 90 figures

The global COVID-19 crisis has greatly increased industry demand for antimicrobial and antiviral coatings, especially for high touch surfaces in healthcare, retail, hotels, offices and the home. 

Nanocoatings can demonstrate up to 99.9998% effectiveness against bacteria, formaldehyde, mold and viruses, and are up to 1000 times more efficient than previous technologies available on the market. They can work on multiple levels at the same time: anti-microbial, anti-viral, and anti-fungal, self-cleaning and anti-corrosion. Nanocoatings companies have partnering with global manufacturers and cities to develop anti-viral facemasks, hazard suits and easily applied surface coatings.

Their use makes it possible to provide enhanced anti-microbial, anti-viral, mold-reducing and TVOC degrading processes, that are non-toxic and environmentally friendly, allowing for exceptional hygiene standards in all areas of work and life. As a result, it is possible create a healthier living and working environment and to offer holistic solutions to people with a diminished immune system. Nano-based surface coatings prevent the spread of bacteria, fungi and viruses via infected surfaces of so called high-traffic objects, such as door and window handles in public places, hospitals, public buildings, schools, elderly homes etc. 

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings are available in various material compositions, for healthcare and household surfaces, for indoor and outdoor applications, to protect against corrosion and mildew, as well as for water and air purification. Nanocoatings also reduce surface contamination, are self-cleaning, water-repellent and odor-inhibiting, reducing cleaning and maintenance

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings can be applied by spraying or dipping and adhere to various surfaces such as glass, metals and various alloys, copper and stainless steel, marble and stone slabs, ceramics and tiles, textiles and plastics.

Nanoparticles of different materials  such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, and graphene-based materials have demonstrated enhanced anti-microbial and anti-viral activity. The use of inorganic nanomaterials when compared with organic anti-microbial agents is also desirable due to their stability, robustness, and long shelf life. At high temperatures/pressures organic antimicrobial materials are found to be less stable compared to inorganic antimicrobial agents. The various antimicrobial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios, and their distinctive physico-chemical properties..

Anti-microbial, anti-viral and anti-fungal nanocoatings applications include, but are not limited to:

  • Medical facilities and laboratories
  • Medical equipment;
  • Fabrics and clothing like face masks;
  • Hospital furniture;
  • Hotels and other public spaces;
  • Window glass;
  • Pharmaceutical labs;
  • Packaging;
  • Food packaging areas and restaurants;
  • Food processing equipment;
  • Transportation, air ducts and air ventilation systems;
  • Appliances;
  • Sporting and exercise equipment;
  • Containers;
  • Aircraft interiors and buildings;
  • Cruise lines and other marine vessels;
  • Restroom accessories;
  • Shower enclosures;
  • Handrails;
  • Schools and childcare facilities;
  • Playgrounds.

 

Report contents include:

  • Size in value for the Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market, and growth rate during the forecast period, 2017-2031. Historical figures are also provided, from 2010.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market segments analysis. End users markets include interiors (e.g. household, retails, hotels, workplace, business environments), sanitary, indoor hygiene, medical & healthcare, textiles, plastics packaging etc. 
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • Market outlook for 2021. 
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings applications.
  • Analysis of nanomaterials utilized in Anti-microbial, Anti-viral, and Anti-fungal surface treatments, coatings and films including
    • nanosilver
    • graphene
    • nanosilica
    • titanium dioxide nanoparticles/powders
    • zinc oxide nanoparticles/powders
    • nanocellulose
    • carbon nanotubes
    • fullerenes
    • copper oxide nanoparticles
    • iron oxide nanoparticles
    • gold nanoparticles
    • nitric oxide nanoparticles
    • iron oxide nanoparticles
    • boron nitride nanoparticles
    • magnesium oxide nanoparticles
    • aluminium oxide nanoparticles
    • organic nanoparticles
    • chitosan nanoparticles
    • Black Phosphorus.
  • In-depth analysis of antibacterial and antiviral treatment for antibacterial mask, filter, gloves, clothes and devices. 
  • Revenue scenarios for COVID-19 response. 
  • 160 company profiles including products, technology base, target markets and contact details. Companies features include Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., EnvisionSQ, GrapheneCA, Integricote, Nano Came Co. Ltd., NanoTouch Materials, LLC, NBD Nanotechnologies, NitroPep, OrganoClick, HeiQ Materials, Green Earth Nano Science, Reactive Surfaces, Kastus, Halomine, sdst, myNano, Voneco and many more.  

 

Table of contents (.pdf)

1              INTRODUCTION 25

  • 1.1          Aims and objectives of the study               25
  • 1.2          Market definition             26
  • 1.2.1      Properties of nanomaterials        26
  • 1.2.2      Categorization   27

 

2              RESEARCH METHODOLOGY         28

 

3              EXECUTIVE SUMMARY   29

  • 3.1          High performance coatings          29
  • 3.2          Nanocoatings    30
  • 3.3          Anti-viral nanoparticles and nanocoatings             32
    • 3.3.1.1   Reusable Personal Protective Equipment (PPE)   34
    • 3.3.1.2   Wipe on coatings             35
    • 3.3.1.3   Facemask coatings           35
    • 3.3.1.4   Long-term mitigation of surface contamination with nanocoatings             35
  • 3.4          Market drivers and trends            36
  • 3.5          Global market size and opportunity to 2031          38
    • 3.5.1      End user market for nanocoatings            38
    • 3.5.2      Global revenues for nanocoatings 2010-2031       41
    • 3.5.3      Global revenues for nanocoatings, by market      42
      • 3.5.3.1   The market in 2019          42
      • 3.5.3.2   The market in 2020          45
      • 3.5.3.3   The market in 2031          47
    • 3.5.4      Regional demand for nanocoatings          48
    • 3.5.5      Demand for antimicrobial and anti-viral nanocoatings post COVID-19 pandemic  50
  • 3.6          Market and technical challenges               53
  • 3.7          Toxicity and environmental considerations           54
  • 3.8          Impact of COVID-19 on the market           54
  • 3.9          Industry developments 2020-2021            55
  • 3.10        Market outlook in 2021  56

 

4              NANOCOATINGS TECHNICAL ANALYSIS  57

  • 4.1          Properties of nanocoatings          57
  • 4.2          Benefits of using nanocoatings   58
    • 4.2.1      Types of nanocoatings   59
  • 4.3          Production and synthesis methods          59
    • 4.3.1      Depositing functional nanocomposite films          60
    • 4.3.2      Film coatings techniques analysis              60
    • 4.3.3      Superhydrophobic coatings on substrates             63
    • 4.3.4      Electrospray and electrospinning              63
    • 4.3.5      Chemical and electrochemical deposition              64
      • 4.3.5.1   Chemical vapor deposition (CVD)              64
      • 4.3.5.2   Physical vapor deposition (PVD) 65
      • 4.3.5.3   Atomic layer deposition (ALD)    66
  • 4.3.6      Aerosol coating 67
  • 4.3.7      Layer-by-layer Self-assembly (LBL)            67
  • 4.3.8      Sol-gel process  69
  • 4.3.9      Etching 71

 

5              NANOMATERIALS USED IN ANTI-MICROBIAL, ANTI-VIRAL AND ANTI-FUNGAL NANOCOATINGS      72

  • 5.1          Metallic-based coatings 72
  • 5.2          Polymer-based coatings 72
  • 5.3          Antimicrobial nanomaterials       73
  • 5.4          GRAPHENE         76
    • 5.4.1      Properties           76
    • 5.4.2      Graphene oxide 78
      • 5.4.2.1   Anti-bacterial activity      78
      • 5.4.2.2   Anti-viral activity              79
    • 5.4.3      Reduced graphene oxide (rGO) 79
    • 5.4.4      Application in anti-microbial and anti-viral nanocoatings 80
      • 5.4.4.1   Anti-microbial wound dressings 80
      • 5.4.4.2   Medical textiles 81
      • 5.4.4.3   Anti-microbial medical devices and implants        81
  • 5.5          SILICON DIOXIDE/SILICA NANOPARTICLES             81
    • 5.5.1      Properties           81
    • 5.5.2      Antimicrobial and antiviral activity            83
      • 5.5.2.1   Easy-clean and dirt repellent coatings     83
  • 5.6          SILVER NANOPARTICLES (AgNPs)              83
    • 5.6.1      Properties           83
    • 5.6.2      Application in anti-microbial and anti-viral nanocoatings 84
      • 5.6.2.1   Textiles 85
      • 5.6.2.2   Wound dressings             85
      • 5.6.2.3   Consumer products        86
      • 5.6.2.4   Air filtration        86
      • 5.6.2.5   Packaging            86
    • 5.6.3      Companies         86
  • 5.7          TITANIUM DIOXIDE NANOPARTICLES      88
    • 5.7.1      Properties           88
      • 5.7.1.1   Exterior and construction glass coatings 90
      • 5.7.1.2   Outdoor air pollution      91
      • 5.7.1.3   Interior coatings               92
      • 5.7.1.4   Improving indoor air quality        92
      • 5.7.1.5   Medical facilities               93
    • 5.7.2      Application in anti-microbial and anti-viral nanocoatings 93
      • 5.7.2.1   Air filtration coatings 93
      • 5.7.2.2   Antimicrobial coating indoor light activation         94
  • 5.8          ZINC OXIDE NANOPARTICLES (ZnO-NPs) 95
    • 5.8.1      Properties           95
    • 5.8.2      Application in anti-microbial and anti-viral nanocoatings 96
      • 5.8.2.1   Sterilization dressings    96
      • 5.8.2.2   Anti-bacterial surfaces in construction and building ceramics and glass     96
      • 5.8.2.3   Antimicrobial packaging 97
      • 5.8.2.4   Anti-bacterial textiles     97
  • 5.9          NANOCEULLOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)       99
    • 5.9.1      Properties           99
    • 5.9.2      Application in anti-microbial and anti-viral nanocoatings 100
      • 5.9.2.1   Cellulose nanofibers       100
      • 5.9.2.2   Cellulose nanocrystals (CNC)       100
  • 5.10        CARBON NANOTUBES    100
    • 5.10.1    Properties           100
    • 5.10.2    Application in anti-microbial and anti-viral nanocoatings 100
  • 5.11        FULLERENES       101
    • 5.11.1    Properties           101
    • 5.11.2    Application in anti-microbial and anti-viral nanocoatings 102
  • 5.12        COPPER OXIDE NANOPARTICLES 103
    • 5.12.1    Properties           103
    • 5.12.2    Application in anti-microbial and anti-viral nanocoatings 103
    • 5.12.3    Companies         103
  • 5.13        GOLD NANOPARTICLES (AuNPs) 104
    • 5.13.1    Properties           104
    • 5.13.2    Application in anti-microbial and anti-viral nanocoatings 104
  • 5.14        IRON OXIDE NANOPARTICLES     105
    • 5.14.1    Properties           105
    • 5.14.2    Application in anti-microbial and anti-viral nanocoatings 105
  • 5.15        MAGNESIUM OXIDE NANOPARTICLES     106
    • 5.15.1    Properties           106
    • 5.15.2    Application in anti-microbial and anti-viral nanocoatings 107
  • 5.16        NITRIC OXIDE NANOPARTICLES  107
    • 5.16.1    Properties           107
    • 5.16.2    Application in anti-microbial and anti-viral nanocoatings 108
  • 5.17        ALUMINIUM OXIDE NANOPARTICLES      109
    • 5.17.1    Properties           109
    • 5.17.2    Application in anti-microbial and anti-viral nanocoatings 110
  • 5.18        ORGANIC NANOPARTICLES          110
  • 5.19        CHITOSAN NANOPARTICLES        112
    • 5.19.1    Properties           112
    • 5.19.2    Application in anti-microbial and anti-viral nanocoatings 114
      • 5.19.2.1                Wound dressings             114
      • 5.19.2.2                Packaging coatings and films       114
      • 5.19.2.3                Food storage      114
  • 5.20        BLACK PHOSPHORUS      115
    • 5.20.1    Properties           115
    • 5.20.2    Application in anti-microbial and anti-viral nanocoatings 115
  • 5.21        BORON NITRIDE NANOPARTICLES             116
    • 5.21.1    Properties           116
    • 5.21.2    Application in anti-microbial and anti-viral nanocoatings 117
  • 5.22        HYDROPHOBIC AND HYDROPHILIC COATINGS AND SURFACES      118
    • 5.22.1    Hydrophilic coatings       118
    • 5.22.2    Hydrophobic coatings     118
    • 5.22.2.1                Properties           119
      • 5.22.2.2                Application in facemasks              120
  • 5.23        SUPERHYDROPHOBIC COATINGS AND SURFACES 120
    • 5.23.1    Properties           120
      • 5.23.1.1                Anti-microbial use           121
      • 5.23.1.2                Durability issues               122
      • 5.23.1.3                Nanocellulose   122
  • 5.24        OLEOPHOBIC AND OMNIPHOBIC COATINGS AND SURFACES         123
    • 5.24.1    SLIPS     123
    • 5.24.2    Covalent bonding             124
    • 5.24.3    Step-growth graft polymerization             124
    • 5.24.4    Applications       124

 

6              ANTI-MICROBIAL AND ANTI-VIRAL NANOCOATINGS MARKET STRUCTURE               126

 

7              MARKET ANALYSIS FOR ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS 128

  • 7.1          ANTI-MICROBIAL, ANTI-VIRAL AND ANTI-FUNGAL NANOCOATINGS           128
    • 7.1.1      Market drivers and trends            130
    • 7.1.2      Applications       135
    • 7.1.3      Global revenues 2010-2031          137
    • 7.1.4      Companies         141
  • 7.2          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     143
    • 7.2.1      Market drivers and trends            144
    • 7.2.2      Benefits of anti-fouling and easy-to-clean nanocoatings 145
    • 7.2.3      Applications       145
    • 7.2.4      Global revenues 2010-2031          145
    • 7.2.5      Companies         150
  • 7.3          SELF-CLEANING NANOCOATINGS              152
    • 7.3.1      Market drivers and trends            153
    • 7.3.2      Benefits of self-cleaning nanocoatings    154
    • 7.3.3      Global revenues 2010-2031          154
    • 7.3.4      Companies         160
  • 7.4          PHOTOCATALYTIC COATINGS     161
    • 7.4.1      Market drivers and trends            162
    • 7.4.2      Benefits of photocatalytic self-cleaning nanocoatings      163
    • 7.4.3      Applications       163
      • 7.4.3.1   Self-Cleaning Coatings   163
      • 7.4.3.2   Indoor Air Pollution and Sick Building Syndrome 164
      • 7.4.3.3   Outdoor Air Pollution     164
      • 7.4.3.4   Water Treatment             164
    • 7.4.4      Global revenues 2010-2031          164
    • 7.4.5      Companies         169

 

8              MARKET SEGMENT ANALYSIS, BY END USER MARKET       172

  • 8.1          BUILDINGS AND CONSTRUCTION              172
    • 8.1.1      Market drivers and trends            172
    • 8.1.2      Applications       173
      • 8.1.2.1   Protective coatings for glass, concrete and other construction materials  174
      • 8.1.2.2   Photocatalytic nano-TiO2 coatings            174
    • 8.1.3      Global revenues 2010-2031          177
    • 8.1.4      Companies         179
  • 8.2          INTERIOR COATINGS, SANITARY AND INDOOR AIR QUALITY           183
    • 8.2.1      Market drivers and trends            183
    • 8.2.2      Applications       183
      • 8.2.2.1   Self-cleaning and easy-to-clean 183
      • 8.2.2.2   Food preparation and processing              183
      • 8.2.2.3   Indoor pollutants and air quality                184
    • 8.2.3      Global revenues 2010-2031          185
    • 8.2.4      Companies         188
  • 8.3          MEDICAL & HEALTHCARE              191
    • 8.3.1      Market drivers and trends            191
    • 8.3.2      Applications       192
      • 8.3.2.1   Anti-fouling, anti-microbial and anti-viral medical device and equipment coatings               193
      • 8.3.2.2   Medical textiles 193
      • 8.3.2.3   Wound dressings and plastic catheters   193
      • 8.3.2.4   Medical implant coatings              195
    • 8.3.3      Global revenues 2010-2031          196
    • 8.3.4      Companies         199
  • 8.4          TEXTILES AND APPAREL 203
    • 8.4.1      Market drivers and trends            203
    • 8.4.2      Applications       204
      • 8.4.2.1   PPE        204
    • 8.4.3      Global revenues 2010-2031          209
    • 8.4.4      Companies         213
  • 8.5          PACKAGING       216
    • 8.5.1      Market drivers and trends            216
    • 8.5.2      Applications       216
      • 8.5.2.1   Antimicrobial coatings and films in food packaging            217
    • 8.5.3      Companies         219

 

9              ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS COMPANIES      221 (160 company profiles)

 

10           RECENT RESEARCH IN ACADEMIA             338

 

11           REFERENCES       339

 

TABLES

  • Table 1: Categorization of nanomaterials.              28
  • Table 2: Properties of nanocoatings.        31
  • Table 3. Market drivers and trends in antiviral and antimicrobial nanocoatings.    36
  • Table 4: End user markets for nanocoatings.        38
  • Table 5: Global revenues for nanocoatings, 2010-2031, millions USD, conservative estimate.         41
  • Table 6: Global revenues for nanocoatings, 2019, millions USD, by market.            42
  • Table 7: Estimated revenues for nanocoatings, 2020, millions USD, by market.     45
  • Table 8: Estimated revenues for nanocoatings, 2031, millions USD, by market.     47
  • Table 9. Revenues for antimicrobial and antiviral nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           50
  • Table 10. Revenues for Anti-fouling & easy clean nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           51
  • Table 11. Revenues for self-cleaning (bionic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.              51
  • Table 12. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           52
  • Table 13. Market and technical challenges for antimicrobial, anti-viral and anti-fungal nanocoatings.         53
  • Table 14. Toxicity and environmental considerations for anti-viral coatings.           54
  • Table 15: Technology for synthesizing nanocoatings agents.         59
  • Table 16: Film coatings techniques.         61
  • Table 17: Nanomaterials used in nanocoatings and applications. 74
  • Table 18: Graphene properties relevant to application in coatings.             77
  • Table 19. Bactericidal characters of graphene-based materials.   79
  • Table 20. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 80
  • Table 21. Commercial activity in antimicrobial and antiviral nanocoatings graphene nanocoatings.              81
  • Table 22. Markets and applications for antimicrobial nanosilver nanocoatings.     85
  • Table 23. Companies developing antimicrobial silver nanocoatings.           86
  • Table 24. Antibacterial effects of ZnO NPs in different bacterial species.  97
  • Table 25. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                102
  • Table 26. Companies developing antimicrobial copper nanocoatings.        103
  • Table 27. Mechanism of chitosan antimicrobial action.    113
  • Table 28: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 119
  • Table 29: Disadvantages of commonly utilized superhydrophobic coating methods.           122
  • Table 30: Applications of oleophobic & omniphobic coatings.       124
  • Table 31: Antimicrobial and antiviral Nanocoatings market structure.       127
  • Table 32: Anti-microbial, anti-viral and anti-fungal nanocoatings-Nanomaterials used, principles, properties and applications        129
  • Table 33. Nanomaterials utilized in antimicrobial and antiviral nanocoatings coatings-benefits and applications.   134
  • Table 34: Antimicrobial and antiviral nanocoatings markets and applications.        136
  • Table 35: Market assessment of  antimicrobial and antiviral nanocoatings.             137
  • Table 36: Opportunity for antimicrobial and antiviral nanocoatings.           138
  • Table 37: Revenues for antimicrobial and antiviral nanocoatings, 2010-2031, US$.              138
  • Table 38: Antimicrobial and antiviral nanocoatings product and application developers.  141
  • Table 39: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                143
  • Table 40: Market drivers and trends in Anti-fouling and easy-to-clean nanocoatings.         144
  • Table 41: Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   146
  • Table 42: Market assessment for anti-fouling and easy-to-clean nanocoatings.     147
  • Table 43: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2031, US$.       148
  • Table 44: Anti-fouling and easy-to-clean nanocoatings product and application developers.           150
  • Table 45: Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.              152
  • Table 46: Market drivers and trends in Self-cleaning (bionic) nanocoatings.            153
  • Table 47: Self-cleaning (bionic) nanocoatings-Markets and applications.  155
  • Table 48: Market assessment for self-cleaning (bionic) nanocoatings.       156
  • Table 49: Revenues for self-cleaning nanocoatings, 2010-2031, US$.         157
  • Table 50: Self-cleaning (bionic) nanocoatings product and application developers.             160
  • Table 51: Photocatalytic coatings-Nanomaterials used, principles, properties and applications.     161
  • Table 52: Market drivers and trends in photocatalytic nanocoatings.         162
  • Table 53: Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          165
  • Table 54: Market assessment for self-cleaning (photocatalytic) nanocoatings.      166
  • Table 55: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2031, US$.         167
  • Table 56: Self-cleaning (photocatalytic) nanocoatings product and application developers.             169
  • Table 57: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in the buildings and construction market.      172
  • Table 58: Nanocoatings applied in the building and construction industry-type of coating, nanomaterials utilized and benefits.              173
  • Table 59: Photocatalytic nanocoatings-Markets and applications.               175
  • Table 60: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2031, US$.          177
  • Table 61: Construction, architecture and exterior protection nanocoatings product developers.   179
  • Table 62: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in Interior coatings, sanitary, and indoor air quality.  183
  • Table 63: Revenues for nanocoatings in Interior coatings, sanitary, and indoor air quality, 2010-2031, US$.             186
  • Table 64: Interior coatings, sanitary, and indoor air quality nanocoatings product developers.       188
  • Table 65: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in medicine and healthcare.         191
  • Table 66: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       193
  • Table 67. Antibacterial nanomaterials used in wound healing .     194
  • Table 68: Types of advanced coatings applied in medical devices and implants.    195
  • Table 69: Nanomaterials utilized in medical implants.      195
  • Table 70: Revenues for nanocoatings in medical and healthcare, 2010-2031, US$.               198
  • Table 71: Medical and healthcare nanocoatings product developers.        199
  • Table 72: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings s in the textiles and apparel industry.              203
  • Table 73: Applications in textiles, by advanced materials type and benefits thereof.           205
  • Table 74: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       206
  • Table 75: Revenues for nanocoatings in textiles and apparel, 2010-2031, US$.      211
  • Table 76: Textiles nanocoatings product developers.       213
  • Table 77: Market drivers and trends for nanocoatings in the packaging market.   216
  • Table 78: Revenues for nanocoatings in packaging, 2010-2031, US$.          218
  • Table 79: Food packaging nanocoatings product developers.        219
  • Table 80. Photocatalytic coating schematic.          250
  • Table 81. Antimicrobial, antiviral and antifungal nanocoatings development in academia.                338

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 34
  • Figure 2. Face masks coated with antibacterial & antiviral nanocoating.   35
  • Figure 3: Global revenues for nanocoatings, 2010-2031, millions USD, conservative estimate.       42
  • Figure 4: Global market revenues for nanocoatings 2019, millions USD, by market.             44
  • Figure 5: Markets for nanocoatings 2019, %.        45
  • Figure 6: Estimated market revenues for nanocoatings 2020, millions USD, by market.      46
  • Figure 7: Estimated market revenues for nanocoatings 2031, millions USD, by market.      47
  • Figure 8: Markets for nanocoatings 2031, %.        48
  • Figure 9: Regional demand for nanocoatings, 2019-2031.                49
  • Figure 10: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards.               58
  • Figure 11: Nanocoatings synthesis techniques.   60
  • Figure 12: Techniques for constructing superhydrophobic coatings on substrates.              63
  • Figure 13: Electrospray deposition.          64
  • Figure 14: CVD technique.            65
  • Figure 15: Schematic of ALD.       67
  • Figure 16. A substrate undergoing layer-by-layer (LbL) nanocoating.         68
  • Figure 17: SEM images of different layers of TiO2 nanoparticles in steel surface.  68
  • Figure 18: The coating system is applied to the surface. The solvent evaporates. 70
  • Figure 19: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                70
  • Figure 20: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure) on top makes the glass hydro- phobic and oleophobic.  70
  • Figure 21. Nanoparticles antibacterial mode of action.     73
  • Figure 22: Graphair membrane coating. 77
  • Figure 23: Antimicrobial activity of Graphene oxide (GO).              78
  • Figure 24: Hydrophobic easy-to-clean coating.    83
  • Figure 25 Anti-bacterial mechanism of silver nanoparticle coating.             84
  • Figure 26: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      89
  • Figure 27:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              89
  • Figure 28: Titanium dioxide-coated glass (left) and ordinary glass (right). 91
  • Figure 29:  Self-Cleaning mechanism utilizing photooxidation.      91
  • Figure 30: Schematic of photocatalytic air purifying pavement.   92
  • Figure 31: Schematic of photocatalytic indoor air purification filter.           93
  • Figure 32: Schematic of photocatalytic water purification.              94
  • Figure 33. Schematic of antibacterial activity of ZnO NPs.               97
  • Figure 34: Types of nanocellulose.            99
  • Figure 35. Mechanism of antimicrobial activity of carbon nanotubes.       101
  • Figure 36: Fullerene schematic. 102
  • Figure 37. Types of organic nanoparticles and application in antimicrobial coatings.           110
  • Figure 38. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               113
  • Figure 39: (a) Water drops on a lotus leaf.             118
  • Figure 40: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              119
  • Figure 41: Contact angle on superhydrophobic coated surface.   121
  • Figure 42: Self-cleaning nanocellulose dishware. 123
  • Figure 43: SLIPS repellent coatings.          124
  • Figure 44: Omniphobic coatings.                125
  • Figure 45: Schematic of typical commercialization route for nanocoatings producer.          126
  • Figure 46: Market drivers and trends in antimicrobial and antiviral nanocoatings. 131
  • Figure 47. Nano-coated self-cleaning touchscreen.           137
  • Figure 48: Revenues for antimicrobial and antiviral nanocoatings, 2010-2031, US$.             139
  • Figure 49. Revenues for antimicrobial and antiviral nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           140
  • Figure 50: Anti-fouling treatment for heat-exchangers.   145
  • Figure 51: Markets for anti-fouling and easy clean nanocoatings, by %.    146
  • Figure 52: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2031.                147
  • Figure 53: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2031, millions USD.     149
  • Figure 54. Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates             150
  • Figure 55: Self-cleaning superhydrophobic coating schematic.      154
  • Figure 56: Markets for self-cleaning nanocoatings, %, 2018.           155
  • Figure 57: Potential addressable market for self-cleaning (bionic) nanocoatings by 2031.  157
  • Figure 58: Revenues for self-cleaning nanocoatings, 2010-2031, US$.        158
  • Figure 59. Revenues for self-cleaning (bionic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates               159
  • Figure 60: Principle of superhydrophilicity.           163
  • Figure 61: Schematic of photocatalytic air purifying pavement.   164
  • Figure 62: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 165
  • Figure 63: Markets for self-cleaning (photocatalytic) nanocoatings 2019, %.           165
  • Figure 64: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2031.  167
  • Figure 65: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2031, US$.       168
  • Figure 66. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates             169
  • Figure 67: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2019.  176
  • Figure 68: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2031.  177
  • Figure 69: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2031, US$.         178
  • Figure 70: Nanocoatings in Interior coatings, sanitary, and indoor air quality, by coatings type %, 2019.      186
  • Figure 71: Potential addressable market for nanocoatings in Interior coatings, sanitary, and indoor air quality by 2031.                186
  • Figure 72: Revenues for nanocoatings in Interior coatings, sanitary, and indoor air quality, 2010-2031, US$.            187
  • Figure 73: Anti-bacterial sol-gel nanoparticle silver coating.           196
  • Figure 74: Nanocoatings in medical and healthcare, by coatings type %, 2019.       197
  • Figure 75: Potential addressable market for nanocoatings in medical & healthcare by 2031.            198
  • Figure 76: Revenues for nanocoatings in medical and healthcare, 2010-2031, US$.             199
  • Figure 77: Omniphobic-coated fabric.     204
  • Figure 78: Nanocoatings in textiles and apparel, by coatings type %, 2019.              210
  • Figure 79: Potential addressable market for nanocoatings in textiles and apparel by 2031.               211
  • Figure 80: Revenues for nanocoatings in textiles and apparel, 2010-2031, US$.     212
  • Figure 81: Oso fresh food packaging incorporating antimicrobial silver.    218
  • Figure 82: Revenues for nanocoatings in packaging, 2010-2031, US$.        219
  • Figure 83. Lab tests on DSP coatings.       249
  • Figure 84. GrapheneCA anti-bacterial and anti-viral coating.          257
  • Figure 85. Microlyte® Matrix bandage for surgical wounds.           264
  • Figure 86. Self-cleaning nanocoating applied to face masks.          268
  • Figure 87. NanoSeptic surfaces. 296
  • Figure 88. Nasc NanoTechnology personnel shown applying MEDICOAT to airport luggage carts.  302
  • Figure 89. V-CAT® photocatalyst mechanism.      331
  • Figure 90. Applications of Titanystar.       335

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
PDF download.

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
Print edition (including tracked delivery).

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2131
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2131
PDF and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.

Share.

Comments are closed.