The Global Market for Advanced Chemical Recycling 2024-2040

0

Published August 2023 | 234 pages, 39 tables, 42 figures | Download table of contents

Advanced Chemical Recycling - Next-Gen Technologies to Process Hard-to-Recycle Plastics into New Materials, Fuels and Chemicals

Advanced recycling technologies like pyrolysis and dissolution enable recycling of plastic waste into virgin-quality plastic, oils, and chemicals - expanding recycling potential beyond mechanical methods.

Key technologies:

  • Pyrolysis - Thermal degradation in the absence of oxygen
  • Gasification - Partial oxidation at high temperatures
  • Depolymerization - Breaks polymer chains into monomers
  • Dissolution - Uses solvents to dissolve plastics

 

Benefits:

  • Recycles wider range of plastics
  • Upcycles waste into high-value materials
  • Reduces plastic waste and landfill usage
  • Lowers dependence on fossil fuels for plastic production

 

Market Drivers

  • Rising pressure to tackle plastic waste
  • Government regulations on circularity and waste reduction
  • Consumer demand for eco-friendly plastics
  • Plastics bans forcing innovation in recycling

 

Challenges

  • Process economics at scale
  • Competition from low-cost virgin plastics
  • Feedstock quality and availability
  • Lack of standards around recyclate

 

Advanced Recycling Industry Outlook

The market is projected for rapid growth globally as technology matures and demand for recycled plastics increases.

Key factors:

  • Government incentives and plastics waste policies
  • Rising adoption from major petrochemical firms
  • Proliferation of recycling technologies
  • Growing consumer and brand sustainability focus

 

Advanced recycling will be crucial in moving to circular plastics use and lowering environmental impacts.

 

The Global Market for Advanced Chemical Recycling 2024-2040
The Global Market for Advanced Chemical Recycling 2024-2040
PDF download/by email.

The Global Market for Advanced Chemical Recycling 2024-2040
The Global Market for Advanced Chemical Recycling 2024-2040
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout

1              CLASSIFICATION OF RECYCLING TECHNOLOGIES 13

 

2              RESEARCH METHODOLOGY         14

 

3              INTRODUCTION 15

  • 3.1          Global production of plastics       15
  • 3.2          The importance of plastic              16
  • 3.3          Issues with plastics use  16
  • 3.4          Bio-based or renewable plastics 17
    • 3.4.1      Drop-in bio-based plastics            17
    • 3.4.2      Novel bio-based plastics                18
  • 3.5          Biodegradable and compostable plastics                19
    • 3.5.1      Biodegradability               19
    • 3.5.2      Compostability  20
  • 3.6          Plastic pollution 20
  • 3.7          Policy and regulations    21
  • 3.8          The circular economy     22
  • 3.9          Plastic recycling 24
    • 3.9.1      Mechanical recycling      25
      • 3.9.1.1   Closed-loop mechanical recycling              26
      • 3.9.1.2   Open-loop mechanical recycling 26
      • 3.9.1.3   Polymer types, use, and recovery             26
  • 3.9.2      Advanced recycling (molecular recycling, chemical recycling)        27
    • 3.9.2.1   Main streams of plastic waste    28
    • 3.9.2.2   Comparison of mechanical and advanced chemical recycling         28

 

4              THE ADVANCED CHEMICAL RECYCLING MARKET 30

  • 4.1          Market drivers and trends            30
  • 4.2          Industry developments 2020-2023            31
  • 4.3          Capacities            39
  • 4.4          Global polymer demand 2022-2040, segmented by recycling technology 41
  • 4.5          Global market by recycling process 2020-2024, metric tons           43
  • 4.6          Chemically recycled plastic products        44
  • 4.7          Market map       45
  • 4.8          Value chain         47
  • 4.9          Life Cycle Assessments (LCA) of advanced plastics recycling processes      48
  • 4.10        Market challenges           49

 

5              ADVANCED RECYCLING TECHNOLOGIES 50

  • 5.1          Applications       50
  • 5.2          Pyrolysis              51
    • 5.2.1      Non-catalytic     52
    • 5.2.2      Catalytic               53
      • 5.2.2.1   Polystyrene pyrolysis     55
      • 5.2.2.2   Pyrolysis for production of bio fuel           55
      • 5.2.2.3   Used tires pyrolysis         59
        • 5.2.2.3.1               Conversion to biofuel     60
      • 5.2.2.4   Co-pyrolysis of biomass and plastic wastes           61
    • 5.2.3      SWOT analysis   62
    • 5.2.4      Companies and capacities             63
  • 5.3          Gasification        65
    • 5.3.1      Technology overview     65
      • 5.3.1.1   Syngas conversion to methanol 66
      • 5.3.1.2   Biomass gasification and syngas fermentation    70
      • 5.3.1.3   Biomass gasification and syngas thermochemical conversion        70
    • 5.3.2      SWOT analysis   71
    • 5.3.3      Companies and capacities (current and planned)               72
  • 5.4          Dissolution          73
    • 5.4.1      Technology overview     73
    • 5.4.2      SWOT analysis   74
    • 5.4.3      Companies and capacities (current and planned)               75
  • 5.5          Depolymerisation            76
    • 5.5.1      Hydrolysis           78
      • 5.5.1.1   Technology overview     78
      • 5.5.1.2   SWOT analysis   79
    • 5.5.2      Enzymolysis        80
      • 5.5.2.1   Technology overview     80
      • 5.5.2.2   SWOT analysis   81
    • 5.5.3      Methanolysis     82
      • 5.5.3.1   Technology overview     82
      • 5.5.3.2   SWOT analysis   83
    • 5.5.4      Glycolysis            84
      • 5.5.4.1   Technology overview     84
      • 5.5.4.2   SWOT analysis   86
    • 5.5.5      Aminolysis          87
      • 5.5.5.1   Technology overview     87
      • 5.5.5.2   SWOT analysis   87
    • 5.5.6      Companies and capacities (current and planned)               88
  • 5.6          Other advanced chemical recycling technologies 89
    • 5.6.1      Hydrothermal cracking   89
    • 5.6.2      Pyrolysis with in-line reforming  90
    • 5.6.3      Microwave-assisted pyrolysis     90
    • 5.6.4      Plasma pyrolysis               91
    • 5.6.5      Plasma gasification          92
    • 5.6.6      Supercritical fluids           92
    • 5.6.7      Carbon fiber recycling    93
      • 5.6.7.1   Processes            93
      • 5.6.7.2   Companies         96

 

6              COMPANY PROFILES       97 (159 company profiles)

 

7              REFERENCES       230

 

List of Tables

  • Table 1. Types of recycling.          13
  • Table 2. Issues related to the use of plastics.        16
  • Table 3. Type of biodegradation.               20
  • Table 4. Overview of the recycling technologies. 25
  • Table 5. Polymer types, use, and recovery.           26
  • Table 6. Composition of plastic waste streams.   28
  • Table 7. Comparison of mechanical and advanced chemical recycling.       28
  • Table 8. Market drivers and trends in the advanced chemical recycling market.    30
  • Table 9. Advanced chemical recycling industry developments 2020-2023.                31
  • Table 10. Advanced plastics recycling capacities, by technology. 39
  • Table 11. Example chemically recycled plastic products.  44
  • Table 12. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.            48
  • Table 13. Challenges in the advanced plastics recycling market.   49
  • Table 14. Applications of chemically recycled materials.  50
  • Table 15. Summary of non-catalytic pyrolysis technologies.           52
  • Table 16. Summary of catalytic pyrolysis technologies.    53
  • Table 17. Summary of pyrolysis technique under different operating conditions. 57
  • Table 18. Biomass materials and their bio-oil yield.            58
  • Table 19. Biofuel production cost from the biomass pyrolysis process.      59
  • Table 20. Pyrolysis companies and plant capacities, current and planned.               63
  • Table 21. Summary of gasification technologies. 65
  • Table 22. Advanced recycling (Gasification) companies.  72
  • Table 23. Summary of dissolution technologies. 73
  • Table 24. Advanced recycling (Dissolution) companies     75
  • Table 25. Depolymerisation processes for PET, PU, PC and PA, products and yields.            77
  • Table 26. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        78
  • Table 27. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        80
  • Table 28. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        82
  • Table 29. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        84
  • Table 30. Summary of aminolysis technologies.  87
  • Table 31. Advanced recycling (Depolymerisation) companies and capacities (current and planned).            88
  • Table 32. Overview of hydrothermal cracking for advanced chemical recycling.     89
  • Table 33. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.    90
  • Table 34. Overview of microwave-assisted pyrolysis for advanced chemical recycling.        90
  • Table 35. Overview of plasma pyrolysis for advanced chemical recycling. 91
  • Table 36. Overview of plasma gasification for advanced chemical recycling.            92
  • Table 37. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.   94
  • Table 38. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.              95
  • Table 39. Recycled carbon fiber producers, technology and capacity.         96

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tons. 15
  • Figure 2.  Coca-Cola PlantBottle®.             18
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 18
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          21
  • Figure 5. The circular plastic economy.   23
  • Figure 6. Current management systems for waste plastics.            24
  • Figure 7. Global polymer demand 2022-2040, segmented by technology, million metric tons.        42
  • Figure 8. Global demand by recycling process, 2020-2040, million metric tons.     43
  • Figure 9. Market map for advanced plastics recycling.      47
  • Figure 10. Value chain for advanced plastics recycling market.     47
  • Figure 11. Schematic layout of a pyrolysis plant. 51
  • Figure 12. Waste plastic production pathways to (A) diesel and (B) gasoline           56
  • Figure 13. Schematic for Pyrolysis of Scrap Tires. 60
  • Figure 14. Used tires conversion process.              61
  • Figure 15. SWOT analysis-pyrolysis for advanced recycling.            62
  • Figure 16. Total syngas market by product in MM Nm³/h of Syngas, 2021.               66
  • Figure 17. Overview of biogas utilization.               68
  • Figure 18. Biogas and biomethane pathways.      69
  • Figure 19. SWOT analysis-gasification for advanced recycling.       71
  • Figure 20. SWOT analysis-dissoluton for advanced recycling.         74
  • Figure 21. Products obtained through the different solvolysis pathways of PET, PU, and PA.            76
  • Figure 22. SWOT analysis-Hydrolysis for advanced chemical recycling.      79
  • Figure 23. SWOT analysis-Enzymolysis for advanced chemical recycling.   81
  • Figure 24. SWOT analysis-Methanolysis for advanced chemical recycling. 83
  • Figure 25. SWOT analysis-Glycolysis for advanced chemical recycling.       86
  • Figure 26. SWOT analysis-Aminolysis for advanced chemical recycling.     87
  • Figure 27. NewCycling process.  104
  • Figure 28. ChemCyclingTM prototypes.  108
  • Figure 29. ChemCycling circle by BASF.   108
  • Figure 30. Recycled carbon fibers obtained through the R3FIBER process.               110
  • Figure 31. Cassandra Oil  process.             121
  • Figure 32. CuRe Technology process.       129
  • Figure 33. MoReTec.      167
  • Figure 34. Chemical decomposition process of polyurethane foam.           170
  • Figure 35. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 184
  • Figure 36. Easy-tear film material from recycled material.              201
  • Figure 37. Polyester fabric made from recycled monomers.          204
  • Figure 38. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    214
  • Figure 39. Teijin Frontier Co., Ltd. Depolymerisation process.       219
  • Figure 40. The Velocys process. 225
  • Figure 41. The Proesa® Process. 226
  • Figure 42. Worn Again products.               228

 

The Global Market for Advanced Chemical Recycling 2024-2040
The Global Market for Advanced Chemical Recycling 2024-2040
PDF download/by email.

The Global Market for Advanced Chemical Recycling 2024-2040
The Global Market for Advanced Chemical Recycling 2024-2040
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

Share.

Comments are closed.