The Global Market for Polyhydroxyalkanoates (PHA) to 2033

0

Published October 2022 | 100 pages, 19 figures, 23 tables | Download table of contents

Polyhydroxyalkanoates (PHA) are a family of eco-friendly, biodegradable and compostable biopolymer polyesters synthesized by various bacteria. They encompass a large variety of bioplastics raw materials made from many different renewable resources. Examples of Polyhydroxyalkanoates are PHB, PHV, PHBV, PHBH etc. They are candidates for substitution of petrochemical non-renewable plastics due to their biodegradable and nontoxic properties. They also possess good mechanical properties, good barrier properties toward oxygen, carbon dioxide and moisture, biocompatibility and versatility.

Main applications of PHA-based materials are in films and rigid packaging, disposable items (e.g. drinking straws, utensils, hygiene products and compostable bags), cosmetics, biomedicine, plastic components, agriculture and to a lesser extent in textiles, water treatments, 3D printing etc.

Manufacturing capacities of PHA-based materials has increased in recent years from companies such as CJ Biomaterials, Inc., Danimer, Kaneka, PHAbuilder, Bluepha and this trend will continue as producers have plans to add 100,000s of tons in capacities over the next few years. 

Reports contents include:

  • Analysis of global plastics and bioplastics markets. 
  • Market trends and drivers. 
  • Analysis of the Polyhydroxyalkanoates (PHA) market including demand, production capacities, end user markets and key players. 
  • Applications and market analysis.
  • Global market demand for PHA and production capacities. 
  • 37 company profiles. Companies profiled include Bluepha, CJ Biomaterials, Inc., Danimer Scientific, Kaneka, Nafigate, Newlight Technologies, Beijing PhaBuilder Biotechnology and Tianan Biologic Material Co., Ltd. Profiles include products and production capacities. 

 

 

1              THE GLOBAL PLASTICS AND BIOPLASTICS MARKETS          9

  • 1.1          Global production of plastics       9
  • 1.2          The importance of plastic              10
  • 1.3          Issues with plastics use  10
  • 1.4          Policy and regulations    11
  • 1.5          The circular economy     11
  • 1.6          Market trends   14
  • 1.7          Drivers for recent growth in bioplastics in packaging         15
  • 1.8          Global production to 2033            16
  • 1.9          Main producers and global production capacities               18
    • 1.9.1      Producers           18
    • 1.9.2      By biobased and sustainable plastic type               19
    • 1.9.3      By region             21
  • 1.10        Global demand for biobased and sustainable plastics 2020-21, by market               23
  • 1.11        The PHA market               26
    • 1.11.1    Market overview             27
    • 1.11.2    PHA industry developments 2020-2022  28

 

2              RESEARCH METHODOLOGY         29

 

3              TYPES OF BIOPLASTICS  31

  • 3.1          Bio-based or renewable plastics 32
    • 3.1.1      Drop-in bio-based plastics            32
    • 3.1.2      Novel bio-based plastics                33
  • 3.2          Biodegradable and compostable plastics                34
    • 3.2.1      Biodegradability               34
    • 3.2.2      Compostability  35
  • 3.3          Advantages and disadvantages  35
  • 3.4          Types of Bio-based and/or Biodegradable Plastics              36
  • 3.5          Market leaders by biobased and/or biodegradable plastic types  38
  • 3.6          Conventional polymer materials used in packaging            39
    • 3.6.1      Polyolefins: Polypropylene and polyethylene      40
    • 3.6.2      PET and other polyester polymers            43
    • 3.6.3      Renewable and bio-based polymers for packaging             43
  • 3.7          Comparison of synthetic fossil-based and bio-based polymers     44
  • 3.8          End-of-life treatment of bioplastics          45

 

4              THE GLOBAL POLYHYDROXYALKANOATES MARKET (PHA)               47

  • 4.1          Synthesis and production processes        47
  • 4.2          Types    50
    • 4.2.1      PHB        52
    • 4.2.2      PHBV     52
  • 4.3          Commercially available PHAs      54
  • 4.4          Markets for PHAs             55
    • 4.4.1      Packaging            56
    • 4.4.2      Consumer goods              58
      • 4.4.2.1   Diapers and wet wipes  58
    • 4.4.3      Cosmetics           58
      • 4.4.3.1   PHA microspheres           58
    • 4.4.4      Medical 59
      • 4.4.4.1   Tissue engineering          59
      • 4.4.4.2   Drug delivery     59
    • 4.4.5      Agriculture          59
      • 4.4.5.1   Mulch film           59
      • 4.4.5.2   Grow bags           60
  • 4.5          Producers and production capacities       60
  • 4.6          Global Production capacities and consumption to 2033 (tons)      62
    • 4.6.1      Total      62
    • 4.6.2      By country          63
    • 4.6.3      Global demand, by market           65

 

5              COMPANY PROFILES       66 (37 company profiles)

 

6              REFERENCES       94

 

List of Tables

  • Table 1. Issues related to the use of plastics.        10
  • Table 2. Market trends in biobased and sustainable plastics.         14
  • Table 3. Drivers for recent growth in the bioplastics and biopolymers markets.    15
  • Table 4. Global production capacities of biobased and sustainable plastics 2018-2033, in 1,000 tons.          16
  • Table 5. Global production capacities, by producers.        18
  • Table 6. Global production capacities of biobased and sustainable plastics 2019-2033, by type, in 1,000 tons.        19
  • Table 7. Polyhydroxyalkanoates (PHA) market analysis.   27
  • Table 8. PHA industry developments 2020-2022.                28
  • Table 9. Type of biodegradation.               34
  • Table 10. Advantages and disadvantages of biobased plastics compared to conventional plastics. 35
  • Table 11. Types of Bio-based and/or Biodegradable Plastics, applications.               36
  • Table 12. Market leader by Bio-based and/or Biodegradable Plastic types.             38
  • Table 13. Types of bio-based plastics and fossil-fuel-based plastics             39
  • Table 14. Comparison of synthetic fossil-based and bio-based polymers. 45
  • Table 15. Polyhydroxyalkanoate (PHA) extraction methods.          48
  • Table 16.Types of PHAs and properties. 51
  • Table 17. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 53
  • Table 18. Commercially available PHAs.  54
  • Table 19. Markets and applications for PHAs.       55
  • Table 20. Applications, advantages and disadvantages of PHAs in packaging.         57
  • Table 21. Polyhydroxyalkanoates (PHA) producers.           60
  • Table 22. Global Polyhydroxyalkanoates (PHA) Production capacities 2019-2033 (1,000 tons)        62
  • Table 23. Global Polyhydroxyalkanoates (PHA)  consumption 2019-2033, by market.         65

 

List of Figures

  • Figure 1. Global plastics production 1950-2020, millions of tons. 9
  • Figure 2. The circular plastic economy.   12
  • Figure 3. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.        14
  • Figure 4. Global production capacities of bioplastics 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types.   17
  • Figure 5. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons.  20
  • Figure 6. Global production capacities of bioplastics in 2019-2033, by type.           21
  • Figure 7. Global production capacities of biobased and sustainable plastics 2019-2033, by region, tonnes.               22
  • Figure 8. Current and future applications of biobased and sustainable plastics.     23
  • Figure 9. Global demand for biobased and sustainable plastics by end user market, 2021  24
  • Figure 10. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, tons.                26
  • Figure 11.  Coca-Cola PlantBottle®.           33
  • Figure 12. Interrelationship between conventional, bio-based and biodegradable plastics.              34
  • Figure 13. Routes for synthesizing polymers from fossil-based and bio-based resources.  44
  • Figure 14. PHA family.    51
  • Figure 15. Global Polyhydroxyalkanoates (PHA) Production capacities 2019-2033 (1,000 tons).     63
  • Figure 16. Global Polyhydroxyalkanoates (PHA) Production capacities 2019-2033 (1,000 tons).     64
  • Figure 17. Global Polyhydroxyalkanoates (PHA)  consumption 2019-2033, by market.        65
  • Figure 18. BIOLO e-commerce mailer bag made from PHA.            69
  • Figure 19. PHA production process.         74

 

 

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com

Share.

Comments are closed.