The Global Market for Biofuels to 2033

0

February 2023 | 322 pages, 74 tables, 84 figures | Download table of contents

Renewable energy sources can be converted directly into biofuels. There has been a huge growth in the production and usage of biofuels as substitutes for fossil fuels. Due to the declining reserve of fossil resources as well as environmental concerns, and essential energy security, it is important to develop renewable and sustainable energy and chemicals.

The use of biofuels manufactured from plant-based biomass as feedstock would reduce fossil fuel consumption and consequently the negative impact on the environment.  Renewable energy sources cover a broad raw material base, including cellulosic biomass (fibrous and inedible parts of plants), waste materials, algae, and biogas.

The Global Market for Biofuels covers bio-based fuels, bio-diesel, renewable diesel,  sustainable aviation fuels (SAFs), biogas, electrofuels (e-fuels), green ammonia based on utilization of:

  • First-Generation Feedstocks (food-based) e.g. Waste oils including used cooking oil, animal fats, and other fatty acids.
  • Second-Generation Feedstocks (non-food based) e.g. Lignocellulosic wastes and residues, Energy crops, Agricultural residues, Forestry residues, Biogenic fraction of municipal and industrial waste.
  • Third-Generation Feedstocks e.g. algal biomass
  • Fourth-Generation Feedstocks e.g. genetically modified (GM) algae and cyanobacteria.

 

Report contents include:

  • Market trends and drivers.
  • Market challenges.
  • Biofuels costs, now and estimated to 2033. 
  • Biofuel consumption to 2033. 
  • Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for biofuels, bio-jet fuels, biodiesel, bio-naphtha, bio-based alcohol fuels, biofuel from plastic waste & used tires, biofuels from carbon capture, renewable diesel, biogas, chemical recycling based biofels, electrofuels, green ammonia and other relevant technologies. 
  • Production and synthesis methods.
  • Biofuel industry developments and investments 2020-2023.
  • 171 company profiles including BTG Bioliquids, Byogy Renewables, Caphenia, Enerkem, Infinium. Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Haldor Topsoe, Infinium Electrofuels,  Opera Bioscience, Steeper Energy,  SunFire GmbH, Vertus Energy and Viridos, Inc.

 

 

 

 

1              RESEARCH METHODOLOGY         18

 

2              EXECUTIVE SUMMARY   19

  • 2.1          Market drivers  19
  • 2.2          Market challenges           20
  • 2.3          Liquid biofuels market 2020-2033, by type and production            21

 

3              INDUSTRY DEVELOPMENTS 2020-2023    24

 

4              BIOFUELS            28

  • 4.1          The global biofuels market           28
    • 4.1.1      Diesel substitutes and alternatives           28
    • 4.1.2      Gasoline substitutes and alternatives      30
  • 4.2          Comparison of biofuel costs 2022, by type            30
  • 4.3          Types    31
    • 4.3.1      Solid Biofuels     31
    • 4.3.2      Liquid Biofuels  32
    • 4.3.3      Gaseous Biofuels             32
    • 4.3.4      Conventional Biofuels    33
    • 4.3.5      Advanced Biofuels           33
  • 4.4          Feedstocks         34
    • 4.4.1      First-generation (1-G)    36
    • 4.4.2      Second-generation (2-G)              37
      • 4.4.2.1   Lignocellulosic wastes and residues         38
      • 4.4.2.2   Biorefinery lignin              39
    • 4.4.3      Third-generation (3-G)  43
      • 4.4.3.1   Algal biofuels     43
    • 4.4.4      Fourth-generation (4-G) 46
    • 4.4.5      Advantages and disadvantages, by generation    46

 

5              HYDROCARBON BIOFUELS            48

  • 5.1          Biodiesel              48
    • 5.1.1      Biodiesel by generation 49
    • 5.1.2      Production of biodiesel and other biofuels            50
      • 5.1.2.1   Pyrolysis of biomass        51
      • 5.1.2.2   Vegetable oil transesterification 54
      • 5.1.2.3   Vegetable oil hydrogenation (HVO)         55
      • 5.1.2.4   Biodiesel from tall oil      57
      • 5.1.2.5   Fischer-Tropsch BioDiesel             57
      • 5.1.2.6   Hydrothermal liquefaction of biomass    59
      • 5.1.2.7   CO2 capture and Fischer-Tropsch (FT)     59
      • 5.1.2.8   Dymethyl ether (DME)   60
    • 5.1.3      Global production and consumption        60
  • 5.2          Renewable diesel            63
    • 5.2.1      Production          63
    • 5.2.2      Global consumption       64
  • 5.3          Bio-jet (bio-aviation) fuels            66
    • 5.3.1      Description         66
    • 5.3.2      Global market   66
    • 5.3.3      Production pathways     67
    • 5.3.4      Costs     69
    • 5.3.5      Biojet fuel production capacities                70
    • 5.3.6      Challenges          70
    • 5.3.7      Global consumption       71
  • 5.4          Syngas  72
  • 5.5          Biogas and biomethane 73
    • 5.5.1      Feedstocks         75
  • 5.6          Bio-naphtha       77
    • 5.6.1      Overview            77
    • 5.6.2      Markets and applications              78
    • 5.6.3      Production capacities, by producer, current and planned               79
    • 5.6.4      Production capacities, total (tonnes), historical, current and planned        81

 

6              ALCOHOL FUELS               82

  • 6.1          Biomethanol      82
    • 6.1.1      Methanol-to gasoline technology             82
      • 6.1.1.1   Production processes     83
  • 6.2          Bioethanol          86
    • 6.2.1      Technology description 86
    • 6.2.2      1G Bio-Ethanol  86
    • 6.2.3      Ethanol to jet fuel technology     87
    • 6.2.4      Methanol from pulp & paper production               88
    • 6.2.5      Sulfite spent liquor fermentation              88
    • 6.2.6      Gasification        89
      • 6.2.6.1   Biomass gasification and syngas fermentation    89
      • 6.2.6.2   Biomass gasification and syngas thermochemical conversion        89
    • 6.2.7      CO2 capture and alcohol synthesis           90
    • 6.2.8      Biomass hydrolysis and fermentation     90
      • 6.2.8.1   Separate hydrolysis and fermentation    90
      • 6.2.8.2   Simultaneous saccharification and fermentation (SSF)     91
      • 6.2.8.3   Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             91
      • 6.2.8.4   Simultaneous saccharification and co-fermentation (SSCF)            91
      • 6.2.8.5   Direct conversion (consolidated bioprocessing) (CBP)      92
    • 6.2.9      Global ethanol consumption       93
  • 6.3          Biobutanol          94
    • 6.3.1      Production          96

 

7              CHEMICAL RECYCLING FOR BIOFUELS      97

  • 7.1          Plastic pyrolysis 97
  • 7.2          Used tires pyrolysis         98
    • 7.2.1      Conversion to biofuel     99
  • 7.3          Co-pyrolysis of biomass and plastic wastes           100
  • 7.4          Gasification        101
    • 7.4.1      Syngas conversion to methanol 102
    • 7.4.2      Biomass gasification and syngas fermentation    106
    • 7.4.3      Biomass gasification and syngas thermochemical conversion        106
  • 7.5          Hydrothermal cracking   107

 

8              ELECTROFUELS (E-FUELS)             108

  • 8.1          Introduction       108
    • 8.1.1      Benefits of e-fuels           110
  • 8.2          Feedstocks         111
    • 8.2.1      Hydrogen electrolysis     111
    • 8.2.2      CO2 capture       112
  • 8.3          Production          112
  • 8.4          Electrolysers      114
    • 8.4.1      Commercial alkaline electrolyser cells (AECs)       116
    • 8.4.2      PEM electrolysers (PEMEC)         116
    • 8.4.3      High-temperature solid oxide electrolyser cells (SOECs)  116
  • 8.5          Costs     116
  • 8.6          Market challenges           119
  • 8.7          Companies         120

 

9              ALGAE-DERIVED BIOFUELS           121

  • 9.1          Technology description 121
  • 9.2          Production          121

 

10           GREEN AMMONIA           123

  • 10.1        Production          123
    • 10.1.1    Decarbonisation of ammonia production               125
    • 10.1.2    Green ammonia projects              126
  • 10.2        Green ammonia synthesis methods         126
    • 10.2.1    Haber-Bosch process      126
    • 10.2.2    Biological nitrogen fixation          127
    • 10.2.3    Electrochemical production         128
    • 10.2.4    Chemical looping processes        128
  • 10.3        Blue ammonia   128
    • 10.3.1    Blue ammonia projects  128
  • 10.4        Markets and applications              129
    • 10.4.1    Chemical energy storage              129
      • 10.4.1.1                Ammonia fuel cells          129
    • 10.4.2    Marine fuel         130
  • 10.5        Costs     132
  • 10.6        Estimated market demand           134
  • 10.7        Companies and projects 134

 

11           BIOFUELS FROM CARBON CAPTURE         136

  • 11.1        Overview            137
  • 11.2        CO2 capture from point sources 139
  • 11.3        Production routes            140
  • 11.4        Direct air capture (DAC) 141
    • 11.4.1    Description         141
    • 11.4.2    Deployment       143
    • 11.4.3    Point source carbon capture versus Direct Air Capture     143
    • 11.4.4    Technologies     144
      • 11.4.4.1                Solid sorbents   145
      • 11.4.4.2                Liquid sorbents 147
      • 11.4.4.3                Liquid solvents  148
      • 11.4.4.4                Airflow equipment integration   149
      • 11.4.4.5                Passive Direct Air Capture (PDAC)             149
      • 11.4.4.6                Direct conversion             149
      • 11.4.4.7                Co-product generation  150
      • 11.4.4.8                Low Temperature DAC  150
      • 11.4.4.9                Regeneration methods 150
    • 11.4.5    Commercialization and plants     151
    • 11.4.6    Metal-organic frameworks (MOFs) in DAC             152
    • 11.4.7    DAC plants and projects-current and planned      152
    • 11.4.8    Markets for DAC               159
    • 11.4.9    Costs     159
    • 11.4.10  Challenges          165
    • 11.4.11  Players and production  166
  • 11.5        Methanol            166
  • 11.6        Algae based biofuels       167
  • 11.7        CO₂-fuels from solar        168
  • 11.8        Companies         170
  • 11.9        Challenges          172

 

12           COMPANY PROFILES       173 (171 company profiles)

 

13           REFERENCES       310

 

List of Tables

  • Table 1. Market drivers for biofuels.        19
  • Table 2. Market challenges for biofuels. 20
  • Table 3. Liquid biofuels market 2020-2033, by type and production.          22
  • Table 4. Industry developments in biofuels 2020-2023.    24
  • Table 5. Comparison of biofuel costs (USD/liter) 2022, by type.   30
  • Table 6. Categories and examples of solid biofuel.             31
  • Table 7. Comparison of biofuels and e-fuels to fossil and electricity.           33
  • Table 8. Classification of biomass feedstock.        34
  • Table 9. Biorefinery feedstocks. 35
  • Table 10. Feedstock conversion pathways.           35
  • Table 11. First-Generation Feedstocks.   36
  • Table 12.  Lignocellulosic ethanol plants and capacities.  38
  • Table 13. Comparison of pulping and biorefinery lignins. 39
  • Table 14. Commercial and pre-commercial biorefinery lignin production facilities and  processes 40
  • Table 15. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.  42
  • Table 16. Properties of microalgae and macroalgae.         44
  • Table 17. Yield of algae and other biodiesel crops.             45
  • Table 18. Advantages and disadvantages of biofuels, by generation.         46
  • Table 19. Biodiesel by generation.            49
  • Table 20. Biodiesel production techniques.          51
  • Table 21. Summary of pyrolysis technique under different operating conditions. 51
  • Table 22. Biomass materials and their bio-oil yield.            53
  • Table 23. Biofuel production cost from the biomass pyrolysis process.      53
  • Table 24. Properties of vegetable oils in comparison to diesel.     55
  • Table 25. Main producers of HVO and capacities.               56
  • Table 26. Example commercial Development of BtL processes.    57
  • Table 27. Pilot or demo projects for biomass to liquid (BtL) processes.     58
  • Table 28. Global biodiesel consumption, 2010-2033 (M litres/year).          62
  • Table 29. Global renewable diesel consumption, to 2033 (M litres/year). 64
  • Table 30. Advantages and disadvantages of biojet fuel    66
  • Table 31. Production pathways for bio-jet fuel.   67
  • Table 32. Current and announced biojet fuel facilities and capacities.        70
  • Table 33. Global bio-jet fuel consumption to 2033 (Million litres/year).    71
  • Table 34. Biogas feedstocks.       75
  • Table 35. Bio-based naphtha markets and applications.   78
  • Table 36. Bio-naphtha market value chain.            78
  • Table 37. Bio-based Naphtha production capacities, by producer.               79
  • Table 38. Comparison of biogas, biomethane and natural gas.      84
  • Table 39.  Processes in bioethanol production.  90
  • Table 40. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.           92
  • Table 41. Ethanol consumption 2010-2033 (million litres).             93
  • Table 42. Summary of gasification technologies. 101
  • Table 43. Overview of hydrothermal cracking for advanced chemical recycling.     107
  • Table 44. Applications of e-fuels, by type.             109
  • Table 45. Overview of e-fuels.    110
  • Table 46. Benefits of e-fuels.      110
  • Table 47. Main characteristics of different electrolyzer technologies.        115
  • Table 48. Market challenges for e-fuels. 119
  • Table 49. E-fuels companies.       120
  • Table 50. Green ammonia projects (current and planned).             126
  • Table 51. Blue ammonia projects.             128
  • Table 52. Ammonia fuel cell technologies.            129
  • Table 53. Market overview of green ammonia in marine fuel.       130
  • Table 54. Summary of marine alternative fuels.  131
  • Table 55. Estimated costs for different types of ammonia.             133
  • Table 56. Main players in green ammonia.            134
  • Table 57. Market overview for CO2 derived fuels.              137
  • Table 58. Point source examples.              139
  • Table 59. Advantages and disadvantages of DAC.               142
  • Table 60. Companies developing airflow equipment integration with DAC.             149
  • Table 61. Companies developing Passive Direct Air Capture (PDAC) technologies. 149
  • Table 62. Companies developing regeneration methods for DAC technologies.     150
  • Table 63. DAC companies and technologies.         151
  • Table 64. DAC technology developers and production.    153
  • Table 65. DAC projects in development. 157
  • Table 66. Markets for DAC.          159
  • Table 67. Costs summary for DAC.            159
  • Table 68. Cost estimates of DAC.               163
  • Table 69. Challenges for DAC technology.              165
  • Table 70. DAC companies and technologies.         166
  • Table 71. Microalgae products and prices.             168
  • Table 72. Main Solar-Driven CO2 Conversion Approaches.             169
  • Table 73. Companies in CO2-derived fuel products.          170
  • Table 74. Granbio Nanocellulose Processes.         232

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.     21
  • Figure 2. Distribution of global liquid biofuel production in 2021. 22
  • Figure 3. Diesel and gasoline alternatives and blends.      29
  • Figure 4.  Schematic of a biorefinery for production of carriers and chemicals.      40
  • Figure 5. Hydrolytic lignin powder.           43
  • Figure 6. Regional production of biodiesel (billion litres). 49
  • Figure 7. Flow chart for biodiesel production.      54
  • Figure 8. Global biodiesel consumption, 2010-2033 (M litres/year).           61
  • Figure 9. Global renewable diesel consumption, to 2033 (M litres/year). 64
  • Figure 10. Global bio-jet fuel consumption to 2033 (Million litres/year).  71
  • Figure 11. Total syngas market by product in MM Nm³/h of Syngas, 2021.               72
  • Figure 12. Overview of biogas utilization.               74
  • Figure 13. Biogas and biomethane pathways.      75
  • Figure 14. Bio-based naphtha production capacities, 2018-2033 (tonnes).              81
  • Figure 15. Renewable Methanol Production Processes from Different Feedstocks.              83
  • Figure 16. Production of biomethane through anaerobic digestion and upgrading.              84
  • Figure 17. Production of biomethane through biomass gasification and methanation.       85
  • Figure 18. Production of biomethane through the Power to methane process.     86
  • Figure 19. Ethanol consumption 2010-2033 (million litres).            93
  • Figure 20. Properties of petrol and biobutanol.   95
  • Figure 21. Biobutanol production route. 95
  • Figure 22. Waste plastic production pathways to (A) diesel and (B) gasoline           97
  • Figure 23. Schematic for Pyrolysis of Scrap Tires. 99
  • Figure 24. Used tires conversion process.              100
  • Figure 25. Total syngas market by product in MM Nm³/h of Syngas, 2021.               102
  • Figure 26. Overview of biogas utilization.               104
  • Figure 27. Biogas and biomethane pathways.      105
  • Figure 28. Process steps in the production of electrofuels.             108
  • Figure 29. Mapping storage technologies according to performance characteristics.           109
  • Figure 30. Production process for green hydrogen.           112
  • Figure 31. E-liquids production routes.   113
  • Figure 32. Fischer-Tropsch liquid e-fuel products.              113
  • Figure 33. Resources required for liquid e-fuel production.            114
  • Figure 34. Levelized cost and fuel-switching CO2 prices of e-fuels.             117
  • Figure 35. Cost breakdown for e-fuels.   119
  • Figure 36.  Pathways for algal biomass conversion to biofuels.     121
  • Figure 37. Algal biomass conversion process for biofuel production.          122
  • Figure 38. Classification and process technology according to carbon emission in ammonia production.    123
  • Figure 39. Green ammonia production and use. 125
  • Figure 40. Schematic of the Haber Bosch ammonia synthesis reaction.     127
  • Figure 41. Schematic of hydrogen production via steam methane reformation.    127
  • Figure 42. Estimated production cost of green ammonia.               133
  • Figure 43. Projected annual ammonia production, million tons.   134
  • Figure 44. CO2 capture and separation technology.          136
  • Figure 45. Conversion route for CO2-derived fuels and chemical intermediates.   138
  • Figure 46.  Conversion pathways for CO2-derived methane, methanol and diesel.               139
  • Figure 47. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   141
  • Figure 48. Global CO2 capture from biomass and DAC in the Net Zero Scenario.   142
  • Figure 49.  DAC technologies.     144
  • Figure 50. Schematic of Climeworks DAC system.               145
  • Figure 51. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.          146
  • Figure 52.  Flow diagram for solid sorbent DAC.  147
  • Figure 53. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.    148
  • Figure 54. Global capacity of direct air capture facilities. 153
  • Figure 55. Global map of DAC and CCS plants.      158
  • Figure 56. Schematic of costs of DAC technologies.           161
  • Figure 57. DAC cost breakdown and comparison.               162
  • Figure 58. Operating costs of generic liquid and solid-based DAC systems.              164
  • Figure 59. CO2 feedstock for the production of e-methanol.         167
  • Figure 60. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c     169
  • Figure 61. Audi synthetic fuels.  170
  • Figure 62. ANDRITZ Lignin Recovery process.       179
  • Figure 63. ChemCyclingTM prototypes.  184
  • Figure 64. ChemCycling circle by BASF.   184
  • Figure 65. FBPO process 194
  • Figure 66. Direct Air Capture Process.     198
  • Figure 67. CRI process.   201
  • Figure 68. Cassandra Oil  process.             204
  • Figure 69. Colyser process.          210
  • Figure 70. Domsjö process.          214
  • Figure 71. ECFORM electrolysis reactor schematic.            216
  • Figure 72. Dioxycle modular electrolyzer.              217
  • Figure 73. FuelPositive system.  227
  • Figure 74. INERATEC unit.             241
  • Figure 75. Infinitree swing method.         242
  • Figure 76. Enfinity cellulosic ethanol technology process.               272
  • Figure 77: Plantrose process.      278
  • Figure 78. Sunfire process for Blue Crude production.      293
  • Figure 79. O12 Reactor. 296
  • Figure 80. Sunglasses with lenses made from CO2-derived materials.        296
  • Figure 81. CO2 made car part.    297
  • Figure 82. The Velocys process. 300
  • Figure 83. Goldilocks process and applications.   303
  • Figure 84. The Proesa® Process. 304
  •  

 

The Global Market for Biofuels to 2033
The Global Market for Biofuels to 2033
PDF download.

The Global Market for Biofuels to 2033
The Global Market for Biofuels to 2033
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

Share.

Comments are closed.