The Global Market for Advanced Chemical Recycling

0

Published January 2023 | 218 pages, 39 tables, 42 figures | Download table of contents

Advanced recycling technologies that utilize heat or chemical solvents to recycle plastics into new plastics, fuels or chemicals are a key strategy for solving the global plastic problem. 

Advanced chemical recycling technologies are now being developed by around 130 companies worldwide, and capacities are increasing. Companies including ExxonMobil, New Hope Energy, Nexus Circular, Eastman, Encina are planning to build large plastics recycling plants.

As well as complementing traditional mechanical recycling, advanced recycling offers benefits such as widening the range of recyclable plastic options, producing high value plastics (e.g. for flexible food packaging) and improving sustainability (using waste rather than fossil fuels for plastics production). 

Report contents include:

  • Overview of the global plastics and bioplastics markets.
  • Market drivers and trends.
  • Advanced chemical recycling industry developments 2020-2023.
  • Capacities by technology. 
  • Market maps and value chain. 
  • In-depth analysis of advanced chemical recycling technologies. 
  • Advanced recycling technologies covered include:
    • Pyrolysis
    • Gasification
    • Dissolution
    • Depolymerisation
    • Emerging technologies.
  • Profiles of 144 companies. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, Synova and SABIC.

 

 

1              RESEARCH METHODOLOGY         13

 

2              CLASSIFICATION OF RECYCLING TECHNOLOGIES 14

 

3              INTRODUCTION 15

  • 3.1          Global production of plastics       15
  • 3.2          The importance of plastic              16
  • 3.3          Issues with plastics use  16
  • 3.4          Bio-based or renewable plastics 17
    • 3.4.1      Drop-in bio-based plastics            17
    • 3.4.2      Novel bio-based plastics                18
  • 3.5          Biodegradable and compostable plastics                19
    • 3.5.1      Biodegradability               19
    • 3.5.2      Compostability  20
  • 3.6          Plastic pollution 20
  • 3.7          Policy and regulations    21
  • 3.8          The circular economy     22
  • 3.9          Plastic recycling 24
    • 3.9.1      Mechanical recycling      25
      • 3.9.1.1   Closed-loop mechanical recycling              26
      • 3.9.1.2   Open-loop mechanical recycling 26
      • 3.9.1.3   Polymer types, use, and recovery             26
    • 3.9.2      Advanced chemical recycling       27
      • 3.9.2.1   Main streams of plastic waste    28
      • 3.9.2.2   Comparison of mechanical and advanced chemical recycling         28

 

4              THE ADVANCED CHEMICAL RECYCLING MARKET 30

  • 4.1          Market drivers and trends            30
  • 4.2          Industry developments 2020-2023            31
  • 4.3          Capacities            34
  • 4.4          Global polymer demand 2022-2040, segmented by recycling technology 37
  • 4.5          Global market by recycling process          38
  • 4.6          Chemically recycled plastic products        39
  • 4.7          Market map       40
  • 4.8          Value chain         41
  • 4.9          Life Cycle Assessments (LCA) of advanced chemical recycling processes   42
  • 4.10        Market challenges           43

 

5              ADVANCED RECYCLING TECHNOLOGIES 44

  • 5.1          Applications       44
  • 5.2          Pyrolysis              45
    • 5.2.1      Non-catalytic     46
    • 5.2.2      Catalytic               47
      • 5.2.2.1   Polystyrene pyrolysis     49
      • 5.2.2.2   Pyrolysis for production of bio fuel           49
      • 5.2.2.3   Used tires pyrolysis         53
        • 5.2.2.3.1               Conversion to biofuel     54
      • 5.2.2.4   Co-pyrolysis of biomass and plastic wastes           55
    • 5.2.3      SWOT analysis   56
    • 5.2.4      Companies and capacities             57
  • 5.3          Gasification        59
    • 5.3.1      Technology overview     59
      • 5.3.1.1   Syngas conversion to methanol 60
      • 5.3.1.2   Biomass gasification and syngas fermentation    64
      • 5.3.1.3   Biomass gasification and syngas thermochemical conversion        64
    • 5.3.2      SWOT analysis   65
    • 5.3.3      Companies and capacities (current and planned)               66
  • 5.4          Dissolution          67
    • 5.4.1      Technology overview     67
    • 5.4.2      SWOT analysis   68
    • 5.4.3      Companies and capacities (current and planned)               69
  • 5.5          Depolymerisation            70
    • 5.5.1      Hydrolysis           72
      • 5.5.1.1   Technology overview     72
      • 5.5.1.2   SWOT analysis   73
    • 5.5.2      Enzymolysis        74
      • 5.5.2.1   Technology overview     74
      • 5.5.2.2   SWOT analysis   75
    • 5.5.3      Methanolysis     76
      • 5.5.3.1   Technology overview     76
      • 5.5.3.2   SWOT analysis   77
    • 5.5.4      Glycolysis            78
      • 5.5.4.1   Technology overview     78
      • 5.5.4.2   SWOT analysis   80
    • 5.5.5      Aminolysis          81
      • 5.5.5.1   Technology overview     81
      • 5.5.5.2   SWOT analysis   81
    • 5.5.6      Companies and capacities (current and planned)               82
  • 5.6          Other advanced chemical recycling technologies 83
    • 5.6.1      Hydrothermal cracking   83
    • 5.6.2      Pyrolysis with in-line reforming  84
    • 5.6.3      Microwave-assisted pyrolysis     84
    • 5.6.4      Plasma pyrolysis               85
    • 5.6.5      Plasma gasification          86
    • 5.6.6      Supercritical fluids           86
    • 5.6.7      Carbon fiber recycling    87
      • 5.6.7.1   Processes            87
      • 5.6.7.2   Companies         90

 

6              COMPANY PROFILES       91 (144 company profiles)

 

7              REFERENCES       214

 

List of Tables

  • Table 1. Types of recycling.          14
  • Table 2. Issues related to the use of plastics.        16
  • Table 3. Type of biodegradation.               20
  • Table 4. Overview of the recycling technologies. 25
  • Table 5. Polymer types, use, and recovery.           26
  • Table 6. Composition of plastic waste streams.   28
  • Table 7. Comparison of mechanical and advanced chemical recycling.       28
  • Table 8. Market drivers and trends in the advanced chemical recycling market.    30
  • Table 9. Advanced recycling industry developments 2020-2023.  31
  • Table 10. Advanced recycling capacities, by technology. 34
  • Table 11. Example chemically recycled plastic products.  39
  • Table 12. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes.            42
  • Table 13. Challenges in the advanced recycling market.   43
  • Table 14. Applications of chemically recycled materials.  44
  • Table 15. Summary of non-catalytic pyrolysis technologies.           46
  • Table 16. Summary of catalytic pyrolysis technologies.    47
  • Table 17. Summary of pyrolysis technique under different operating conditions. 51
  • Table 18. Biomass materials and their bio-oil yield.            52
  • Table 19. Biofuel production cost from the biomass pyrolysis process.      53
  • Table 20. Pyrolysis companies and plant capacities, current and planned.               57
  • Table 21. Summary of gasification technologies. 59
  • Table 22. Advanced recycling (Gasification) companies.  66
  • Table 23. Summary of dissolution technologies. 67
  • Table 24. Advanced recycling (Dissolution) companies     69
  • Table 25. depolymerisation processes for PET, PU, PC and PA, products and yields.             71
  • Table 26. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        72
  • Table 27. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        74
  • Table 28. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        76
  • Table 29. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.        78
  • Table 30. Summary of aminolysis technologies.  81
  • Table 31. Advanced recycling (Depolymerisation) companies and capacities (current and planned).            82
  • Table 32. Overview of hydrothermal cracking for advanced chemical recycling.     83
  • Table 33. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.    84
  • Table 34. Overview of microwave-assisted pyrolysis for advanced chemical recycling.        84
  • Table 35. Overview of plasma pyrolysis for advanced chemical recycling. 85
  • Table 36. Overview of plasma gasification for advanced chemical recycling.            86
  • Table 37. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.   88
  • Table 38. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.              89
  • Table 39. Recycled carbon fiber producers, technology and capacity.         90

 

List of Figures

  • Figure 1. Global plastics production 1950-2020, millions of tons. 15
  • Figure 2.  Coca-Cola PlantBottle®.             18
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 18
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives.          21
  • Figure 5. The circular plastic economy.   23
  • Figure 6. Current management systems for waste plastics.            24
  • Figure 7. Global polymer demand 2022-2040, segmented by technology, million metric tons.        37
  • Figure 8. Global demand by recycling process, 2020-2035, million metric tons.     38
  • Figure 9. Market map for advanced recycling.      40
  • Figure 10. Value chain for advanced recycling market.     41
  • Figure 11. Schematic layout of a pyrolysis plant. 45
  • Figure 12. Waste plastic production pathways to (A) diesel and (B) gasoline           50
  • Figure 13. Schematic for Pyrolysis of Scrap Tires. 54
  • Figure 14. Used tires conversion process.              55
  • Figure 15. SWOT analysis-pyrolysis for advanced recycling.            56
  • Figure 16. Total syngas market by product in MM Nm³/h of Syngas, 2021.               60
  • Figure 17. Overview of biogas utilization.               62
  • Figure 18. Biogas and biomethane pathways.      63
  • Figure 19. SWOT analysis-gasification for advanced recycling.       65
  • Figure 20. SWOT analysis-dissoluton for advanced recycling.         68
  • Figure 21. Products obtained through the different solvolysis pathways of PET, PU, and PA.            70
  • Figure 22. SWOT analysis-Hydrolysis for advanced chemical recycling.      73
  • Figure 23. SWOT analysis-Enzymolysis for advanced chemical recycling.   75
  • Figure 24. SWOT analysis-Methanolysis for advanced chemical recycling. 77
  • Figure 25. SWOT analysis-Glycolysis for advanced chemical recycling.       80
  • Figure 26. SWOT analysis-Aminolysis for advanced chemical recycling.     81
  • Figure 27. NewCycling process.  98
  • Figure 28. ChemCyclingTM prototypes.  102
  • Figure 29. ChemCycling circle by BASF.   102
  • Figure 30. Recycled carbon fibers obtained through the R3FIBER process.               104
  • Figure 31. Cassandra Oil  process.             115
  • Figure 32. CuRe Technology process.       123
  • Figure 33. MoReTec.      156
  • Figure 34. Chemical decomposition process of polyurethane foam.           158
  • Figure 35. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 171
  • Figure 36. Easy-tear film material from recycled material.              186
  • Figure 37. Polyester fabric made from recycled monomers.          189
  • Figure 38. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).    199
  • Figure 39. Teijin Frontier Co., Ltd. Depolymerisation process.       204
  • Figure 40. The Velocys process. 210
  • Figure 41. The Proesa® Process. 211
  • Figure 42. Worn Again products.               212

 

 

 

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com

Share.

Comments are closed.