The Nanocoatings Report 2020

0

Published February 19 2020, 171 tables, 170 figures

The incorporation of nanomaterials into thin films, coatings and surfaces leads to new functionalities, completely innovative characteristics and the possibility to achieve multi-functional coatings and smart coatings. The use of nanomaterials also results in performance enhancements in wear, corrosion-wear, fatigue and corrosion resistant coatings. Nanocoatings demonstrate significant enhancement in outdoor durability and vastly improved hardness and flexibility compared to traditional coatings.

A key advantage of nanocoatings over other types of surface modifying agents (e.g. film forming polymers) is this transparency. Allied to this, nanoparticles can be combined with delivery agents such as hydrophilic surface polymers to greatly enhance a variety of substrates. Nanocoatings can be designed to be used most substrates and can thus be applied to components from a wide range of markets.

Advantages of nanocoatings include:

  • Lower cost for a number of applications.
  • Improved functionalities over traditional coatings (transparency, improved barrier capabilities, resistant to erosion, spectral control (UV, IR).
  • Low energy used to produce coatings.
  • Superior coating characteristics.
  • Thin and lightweight: Reduces packing, transport and storage costs.
  • Nontoxic: Environmentally friendly product.
  • Surface compatibility.
  • Improved durability/resistance.
  • Extreme environment corrosion protection.
  • Cost effectiveness.
  • Reduced prep, application time/number of coats.
  • Extended life.
  • Optimized processing.

Properties such as anti-microbialism, product longevity, thermal insulation, gloss retention, dirt and water repellency, hardness, corrosion resistance, flame retardancy, ultraviolet radiation stability, improved energy efficiency, anti-graffiti, self-cleaning, moisture absorbing, gloss retention and chemical and mechanical properties are improved significantly using nanomaterials such as carbon nanotubes, graphene and nanoparticulate metal oxides.

Nanomaterials incorporated into coatings and applied onto surfaces improve wear resistance and toughness properties as well as meeting stringent regulatory and safety requirements. Nanocoatings also provide multiple functionalities in a single coating such as substrate adhesion, corrosion protection, enhanced colour effects and surface functionality/activity.

Report contents include:

  • Size in value for the nanocoatings market, and growth rate during the forecast period, 2019-2030. Historical figures are also provided, from 2010.
    Nanocoatings market segments and the main player in each segment
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • The regional markets for nanocoatings.
  • Market outlook for 2020.
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • The latest trends in nanostructured surface treatments and coatings.
  • Benefits of nanocoatings, by markets and applications
  • Addressable markets for nanocoatings, by nanocoatings type and industry.
  • Estimated market revenues for nanocoatings to 2030, by nanocoatings type and end user markets.
  • Functional and smart nanocoatings applications.
  • Over 380 company profiles including products and target markets. Companies profiled include Adaptive Surface Technologies Advanced Materials-JTJ S.R.O., AkzoNobel, Alexium, Inc., Applied Nano Surfaces, Asahi Glass Co., Ltd., Cytonix LLC, Dry Surface Technologies LLC, DSP Co., Ltd. Ecology Coatings LLC, EonCoat, LLC, Green Millenium, Inc., Ionics Surface Technologies, Metal Estalki, Metashield, Nanopool GmbH, Nanto Protective Coating, Opus Materials Technology, P2i Ltd., qLayers, Quantiam Technologies, Inc., QuatCare LLC, Sciessent LLC, SuSoS AG, Surfactis Technologies SAS, Surfix BV, Tesla Nanocoatings, Toto etc.

1 EXECUTIVE SUMMARY

  • 1.1          Why nanocoatings?        
  • 1.2          Advantages over traditional coatings       
  • 1.3          Improvements and disruption in coatings markets            
  • 1.4          End user market for nanocoatings            
  • 1.5          The nanocoatings market in 2020              
  • 1.6          Global market size, historical and estimated to 2020         
    • 1.6.1      Global revenues for nanocoatings 2010-2030       
    • 1.6.2      Global revenues for nanocoatings, by market      
    • 1.6.3      Global revenues by nanocoatings, by type            
    • 1.6.4      Regional demand for nanocoatings          
  • 1.7          Market challenges           

 

2 OVERVIEW OF NANOCOATINGS

  • 2.1          Properties           
  • 2.2          Benefits of using nanocoatings   
    • 2.2.1      Types of nanocoatings   
  • 2.3          Production and synthesis methods          
  • 2.4          Hydrophobic coatings and surfaces          
  • 2.5          Superhydrophobic coatings and surfaces               
  • 2.6          Oleophobic and omniphobic coatings and surfaces        
  • 2.7          Other methods 
  • 2.8          Nanomaterials used in nanocoatings       
    • 2.8.1      Graphene           
      • 2.8.1.1   Properties and coatings applications        
    • 2.8.2      Carbon nanotubes (MWCNT and SWCNT)              
      • 2.8.2.1   Properties and applications          
    • 2.8.3      Silicon dioxide/silica nanoparticles (Nano-SiO2)  
      • 2.8.3.1   Properties and applications          
    • 2.8.4      Nanosilver          
      • 2.8.4.1   Properties and applications          
    • 2.8.5      Titanium dioxide nanoparticles (nano-TiO2)         
      • 2.8.5.1   Properties and applications          
    • 2.8.6      Aluminium oxide nanoparticles (Al2O3-NPs)        
      • 2.8.6.1   Properties and applications          
    • 2.8.7      Zinc oxide nanoparticles (ZnO-NPs)          
      • 2.8.7.1   Properties and applications          
    • 2.8.8      Dendrimers        
      • 2.8.8.1   Properties and applications          
    • 2.8.9      Nanodiamonds 
      • 2.8.9.1   Properties and applications          
    • 2.8.10    Nanocellulose (Cellulose nanofibers, cellulose nanocrystals and bacterial cellulose)            
      • 2.8.10.1                Properties and applications       

 

3 MARKET ANALYSIS BY NANOCOATINGS TYPE

  • 3.1          ANTI-FINGERPRINT NANOCOATINGS       
    • 3.1.1      Market overview             
    • 3.1.2      Market assessment        
    • 3.1.3      Applications map             
    • 3.1.4      Global market size           
    • 3.1.5      Product developers        
  • 3.2          ANTI-MICROBIAL NANOCOATINGS           
    • 3.2.1      Market overview             
    • 3.2.2      Market assessment        
    • 3.2.3      Applications map             
    • 3.2.4      Global market size           
    • 3.2.5      Product developers        
  • 3.3          ANTI-CORROSION NANOCOATINGS         
    • 3.3.1      Market overview             
    • 3.3.2      Market assessment        
    • 3.3.3      Applications map             
    • 3.3.4      Global market size           
    • 3.3.5      Product developers        
  • 3.4          ABRASION & WEAR-RESISTANT NANOCOATINGS 
    • 3.4.1      Market overview             
    • 3.4.2      Market assessment        
    • 3.4.3      Applications map             
    • 3.4.4      Global market size           
    • 3.4.5      Product developers        
  • 3.5          BARRIER NANOCOATINGS            
    • 3.5.1      Market overview             
    • 3.5.2      Market assessment        
    • 3.5.3      Applications map             
    • 3.5.4      Global market size           
    • 3.5.5      Product developers        
  • 3.6          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     
    • 3.6.1      Market overview             
    • 3.6.2      Market assessment        
    • 3.6.3      Applications map             
    • 3.6.4      Global market size           
    • 3.6.5      Product developers        
  • 3.7          SELF-CLEANING NANOCOATINGS              
    • 3.7.1      Market overview             
    • 3.7.2      Market assessment        
    • 3.7.3      Applications map             
    • 3.7.4      Global market size           
    • 3.7.5      Product developers        
  • 3.8          PHOTOCATALYTIC NANOCOATINGS         
    • 3.8.1      Market overview             
    • 3.8.2      Market assessment        
    • 3.8.3      Applications map             
    • 3.8.4      Global market size           
    • 3.8.5      Product developers        
  • 3.9          UV-RESISTANT NANOCOATINGS 
    • 3.9.1      Market overview             
    • 3.9.2      Market assessment        
    • 3.9.3      Applications map             
    • 3.9.4      Global market size           
    • 3.9.5      Product developers        
  • 3.10        THERMAL BARRIER AND FLAME RETARDANT NANOCOATINGS     
    • 3.10.1    Market overview             
    • 3.10.2    Market assessment        
    • 3.10.3    Applications map             
    • 3.10.4    Global market size           
    • 3.10.5    Product developers       
  • 3.11        ANTI-ICING AND DE-ICING           
    • 3.11.1    Market overview             
    • 3.11.2    Market assessment        
    • 3.11.3    Applications map             
    • 3.11.4    Global market size           
    • 3.11.5    Product developers        
  • 3.12        ANTI-REFLECTIVE NANOCOATINGS          
    • 3.12.1    Market overview             
    • 3.12.2    Market assessment        
    • 3.12.3    Applications map             
    • 3.12.4    Global market size           
    • 3.12.5    Product developers        
  • 3.13        SELF-HEALING NANOCOATINGS 
    • 3.13.1    Market overview             
    • 3.13.2    Market assessment        
    • 3.13.3    Applications map             
    • 3.13.4    Global market size           
    • 3.13.5    Product developers        

 

4 END USER MARKETS FOR NANOCOATINGS

  • 4.1          AVIATION AND AEROSPACE         
    • 4.1.1      Market drivers and trends            
    • 4.1.2      Applications       
    • 4.1.3      Global market size           
    • 4.1.4      Companies         
  • 4.2          AUTOMOTIVE   
    • 4.2.1      Market drivers and trends            
    • 4.2.2      Applications       
    • 4.2.3      Global market size           
    • 4.2.4      Companies         
  • 4.3          CONSTRUCTION               
    • 4.3.1      Market drivers and trends            
    • 4.3.2      Applications       
    • 4.3.3      Global market size           
    • 4.3.4      Companies         
  • 4.4          ELECTRONICS     
    • 4.4.1      Market drivers  
    • 4.4.2      Applications       
    • 4.4.3      Global market size           
    • 4.4.4      Companies         
  • 4.5          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               
    • 4.5.1      Market drivers and trends            
    • 4.5.2      Applications       
    • 4.5.3      Global market size           
    • 4.5.4      Companies         
  • 4.6          MARINE               
    • 4.6.1      Market drivers and trends            
    • 4.6.2      Applications       
    • 4.6.3      Global market size           
    • 4.6.4      Companies         
  • 4.7          MEDICAL & HEALTHCARE              
    • 4.7.1      Market drivers and trends            
    • 4.7.2      Applications       
    • 4.7.3      Global market size           
    • 4.7.4      Companies         
  • 4.8          MILITARY AND DEFENCE                
    • 4.8.1      Market drivers and trends            
    • 4.8.2      Applications       
    • 4.8.3      Global market size           
    • 4.8.4      Companies         
  • 4.9          PACKAGING       
    • 4.9.1      Market drivers and trends            
    • 4.9.2      Applications       
    • 4.9.3      Global market size           
    • 4.9.4      Companies         
  • 4.10        TEXTILES AND APPAREL 
    • 4.10.1    Market drivers and trends            
    • 4.10.2    Applications      
    • 4.10.3    Global market size           
    • 4.10.4    Companies        
  • 4.11        ENERGY                
    • 4.11.1    Market drivers and trends            
    • 4.11.2    Applications       
    • 4.11.3    Global market size           
    • 4.11.4    Companies         
  • 4.12        OIL AND GAS     
    • 4.12.1    Market drivers and trends          
    • 4.12.2    Applications    
    • 4.12.3    Global market size           
    • 4.12.4    Companies         
  • 4.13        TOOLS AND MACHINING              
    • 4.13.1    Market drivers and trends           
    • 4.13.2    Applications       
    • 4.13.3    Global market size           
    • 4.13.4    Companies         
  • 4.14        ANTI-COUNTERFEITING 
    • 4.14.1    Market drivers and trends          
    • 4.14.2    Applications      
    • 4.14.3    Global market size           
    • 4.14.4    Companies        

 

5 NANOCOATINGS COMPANY PROFILES 

 

6 RESEARCH METHODOLOGY

  • 6.1          Aims and objectives of the study               
  • 6.2          Market definition             
  • 6.2.1      Properties of nanomaterials        
  • 6.2.2      Categorization   

7 REFERENCES

 

TABLES

  • Table 1: Properties of nanocoatings.       
  • Table 2: End user markets for nanocoatings.       
  • Table 3: Global revenues for nanocoatings, 2010-2030, millions USD.        
  • Table 4: Global revenues for nanocoatings, 2010-2030, millions USD, by market. 
  • Table 5: Global revenues for nanocoatings, 2010-2030, millions USD, by type.      
  • Table 6: Market and technical challenges for nanocoatings.           
  • Table 7: Technology for synthesizing nanocoatings agents.            
  • Table 8: Film coatings techniques.            
  • Table 9: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.   
  • Table 10: Disadvantages of commonly utilized superhydrophobic coating methods.           
  • Table 11: Applications of oleophobic & omniphobic coatings.       
  • Table 12: Nanomaterials used in nanocoatings and applications. 
  • Table 13: Graphene properties relevant to application in coatings.             
  • Table 14. Applications of graphene in coatings.   
  • Table 15: Uncoated vs. graphene coated (right) steel wire in corrosive environment solution after 30 days.             
  • Table 16. Applications of carbon nanotubes in coatings.  
  • Table 17: Market and applications for SWCNTs in coatings.            
  • Table 18. Applications of Silicon dioxide/silica nanoparticles (Nano-SiO2) in coatings.        
  • Table 19. Applications of nanosilver in coatings. 
  • Table 20. Applications of Titanium dioxide nanoparticles (nano-TiO2) in coatings.                
  • Table 21. Applications of Aluminium oxide nanoparticles (Al2O3-NPs) in coatings.Scratch and wear resistant          
  • Table 22. Applications of Zinc oxide nanoparticles (ZnO-NPs) in coatings. 
  • Table 23. Applications of dendrimers in coatings.               
  • Table 24. Applications of nanodiamonds in coatings.        
  • Table 25. Applications of nanocellulose in coatings.          
  • Table 26: Applications of cellulose nanofibers(CNF).         
  • Table 27: Applications of bacterial cellulose (BC).               
  • Table 28: Market overview for anti-fingerprint nanocoatings.       
  • Table 29. Market assessment for anti-fingerprint nanocoatings.  
  • Table 30: Revenues for anti-fingerprint nanocoatings, 2010-2030, millions USD.  
  • Table 31: Anti-fingerprint coatings product and application developers.  
  • Table 32. Market overview for anti-microbial nanocoatings.          
  • Table 33: Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications             
  • Table 34. Market assessment for anti-microbial nanocoatings.     
  • Table 35. Bactericidal characters of graphene-based materials.   
  • Table 36. Applications map for antimicrobial nanocoatings.           
  • Table 37. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                
  • Table 38: Revenues for Anti-bacterial nanocoatings, 2010-2030, US$.       
  • Table 39: Anti-microbial nanocoatings product and application developers.           
  • Table 40. Market overview for anti-corrosion nanocoatings.         
  • Table 41: Market assessment for anti-corrosion nanocoatings.    
  • Table 42. Applications map for anti-corrosion nanocoatings.         
  • Table 43: Superior corrosion protection using graphene-added epoxy coatings, right, as compared to a commercial zinc-rich epoxy primer, left.         
  • Table 44: Applications map for anti-corrosion nanocoatings.         
  • Table 45: Opportunity for anti-corrosion nanocoatings by 2030.   
  • Table 46: Revenues for anti-corrosion nanocoatings, 2010-2030. 
  • Table 47: Anti-corrosion nanocoatings product and application developers.          
  • Table 48. Market overview for abrasion and wear-resistant nanocoatings.             
  • Table 49. Market assessment for abrasion and wear resistant nanocoatings.         
  • Table 50. Applications map for abrasion and wear-resistant nanocoatings.             
  • Table 51: Revenues for abrasion and wear resistant nanocoatings, 2010-2030, US$.           
  • Table 52: Abrasion and wear resistant nanocoatings product and application developers. 
  • Table 53. Market overview for barrier nanocoatings.        
  • Table 54. Market assessment for barrier nanocoatings.   
  • Table 55. Applications map for barrier nanocoatings.       
  • Table 56: Revenues for barrier nanocoatings, 2010-2030, US$.     
  • Table 57: Barrier nanocoatings product and application developers.         
  • Table 58: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                
  • Table 59. Market overview for anti-fouling and easy to clean nanocoatings.           
  • Table 60. Market assessment for anti-fouling and easy-to-clean nanocoatings.     
  • Table 61. Applications map for anti-fouling and easy to clean nanocoatings.          
  • Table 62: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2030, US$.       
  • Table 63: Anti-fouling and easy-to-clean nanocoatings product and application developers.           
  • Table 64. Market overview for self-cleaning nanocoatings.            
  • Table 65. Market assessment for self-cleaning nanocoatings.       
  • Table 66. Applications map for self-cleaning nanocoatings.            
  • Table 67: Revenues for self-cleaning nanocoatings, 2010-2030, US$.         
  • Table 68: Self-cleaning (bionic) nanocoatings product and application developers.             
  • Table 69. Market overview for photocatalytic nanocoatings.         
  • Table 70. Market assessment for photocatalytic nanocoatings.    
  • Table 71. Applications map for photocatalytic nanocoatings.        
  • Table 72: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.         
  • Table 73: Self-cleaning (photocatalytic) nanocoatings product and application developers.             
  • Table 74. Market overview for UV resistant nanocoatings.             
  • Table 75. Market assessment for UV-resistant nanocoatings.       
  • Table 76. Applications map for UV resistant nanocoatings.            
  • Table 77: Market assessment for UV-resistant nanocoatings.       
  • Table 78: Revenues for UV-resistant nanocoatings, 2010-2030, US$.          
  • Table 79: UV-resistant nanocoatings product and application developers.              
  • Table 80. Market overview for thermal barrier and flame retardant nanocoatings.              
  • Table 81. Market assessment for thermal barrier and flame retardant nanocoatings.         
  • Table 82. Applications map for thermal barrier and flame retardant nanocoatings.             
  • Table 83: Revenues for thermal barrier and flame retardant nanocoatings, 2010-2030, US$.           
  • Table 84: Thermal barrier and flame retardant nanocoatings product and application developers.               
  • Table 85. Market overview for anti-icing and de-icing nanocoatings.          
  • Table 86. Market assessment for anti-icing and de-icing nanocoatings.     
  • Table 87: Nanomaterials utilized in anti-icing coatings and benefits thereof.          
  • Table 88. Applications map for anti-icing and de-icing nanocoatings.         
  • Table 89: Revenues for anti-icing and de-icing nanocoatings, 2010-2030, US$, conservative and optimistic estimates.                
  • Table 90: Anti-icing and de-icing nanocoatings product and application developers.           
  • Table 91. Market overview for anti-reflective nanocoatings.         
  • Table 92: Anti-reflective nanocoatings-Nanomaterials used, principles, properties and applications.           
  • Table 93. Market assessment for anti-reflective nanocoatings.    
  • Table 94. Applications map for anti-reflective nanocoatings.         
  • Table 95: Revenues for anti-reflective nanocoatings, 2010-2030, US$.      
  • Table 96: Anti-reflective nanocoatings product and application developers.          
  • Table 97. Market overview for self-healing nanocoatings.              
  • Table 98: Types of self-healing coatings and materials.    
  • Table 99: Comparative properties of self-healing materials.           
  • Table 100: Types of self-healing nanomaterials.  
  • Table 101. Market assessment for self-healing nanocoatings.       
  • Table 102. Applications map for self healing nanocoatings.            
  • Table 103: Self-healing nanocoatings product and application developers.             
  • Table 104. Market drivers and trends for nanocoatings in aviation and aerospace.             
  • Table 105: Types of nanocoatings utilized in aerospace and application.   
  • Table 106: Revenues for nanocoatings in the aerospace industry, 2010-2030.         
  • Table 107: Aerospace nanocoatings product developers. 
  • Table 108: Market drivers and trends for nanocoatings in the automotive market.              
  • Table 109: Anti-scratch automotive nanocoatings.            
  • Table 110: Conductive automotive nanocoatings.              
  • Table 111: Hydro- and oleophobic automotive nanocoatings.       
  • Table 112: Anti-corrosion automotive nanocoatings.        
  • Table 113: UV-resistance automotive nanocoatings.        
  • Table 114: Thermal barrier automotive nanocoatings.     
  • Table 115: Flame retardant automotive nanocoatings.    
  • Table 116: Anti-fingerprint automotive nanocoatings.    
  • Table 117: Anti-bacterial automotive nanocoatings.         
  • Table 118: Self-healing automotive nanocoatings.             
  • Table 119: Revenues for nanocoatings in the automotive industry, 2010-2030, US$, conservative and optimistic estimate.             
  • Table 120: Automotive nanocoatings product developers.             
  • Table 121: Market drivers and trends for nanocoatings in the construction market.            
  • Table 122: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits.                
  • Table 123: Photocatalytic nanocoatings-Markets and applications.             
  • Table 124: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.        
  • Table 125: Construction, architecture and exterior protection nanocoatings product developers. 
  • Table 126: Market drivers for nanocoatings in electronics.             
  • Table 127: Main companies in waterproof nanocoatings for electronics, products and synthesis methods.              
  • Table 128: Conductive electronics nanocoatings.               
  • Table 129: Anti-fingerprint electronics nanocoatings.       
  • Table 130: Anti-abrasion electronics nanocoatings.           
  • Table 131: Conductive electronics nanocoatings.               
  • Table 132: Revenues for nanocoatings in electronics, 2010-2030, US$.     
  • Table 133: Nanocoatings applications developers in electronics. 
  • Table 134: Market drivers and trends for nanocoatings in household care and sanitary.    
  • Table 135: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.              
  • Table 136: Household care, sanitary and indoor air quality nanocoatings product developers.       
  • Table 137: Market drivers and trends for nanocoatings in the marine industry.     
  • Table 138: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits.        
  • Table 139: Revenues for nanocoatings in the marine sector, 2010-2030, US$.        
  • Table 140: Marine nanocoatings product developers.      
  • Table 141: Market drivers and trends for nanocoatings in medicine and healthcare.           
  • Table 142: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       
  • Table 143: Types of advanced coatings applied in medical devices and implants.  
  • Table 144: Nanomaterials utilized in medical implants.    
  • Table 145: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.            
  • Table 146: Medical and healthcare nanocoatings product developers.     
  • Table 147: Market drivers and trends for nanocoatings in the military and defence industry.         
  • Table 148: Revenues for nanocoatings in military and defence, 2010-2030, US$.  
  • Table 149: Military and defence nanocoatings product and application developers.           
  • Table 150: Market drivers and trends for nanocoatings in the packaging industry.               
  • Table 151: Revenues for nanocoatings in packaging, 2010-2030, US$.       
  • Table 152: Packaging nanocoatings companies.  
  • Table 153: Market drivers and trends for nanocoatings in the textiles and apparel industry.           
  • Table 154: Applications in textiles, by advanced materials type and benefits thereof.        
  • Table 155: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       
  • Table 156: Applications and benefits of graphene in textiles and apparel.                
  • Table 157: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.  
  • Table 158: Textiles nanocoatings product developers.     
  • Table 159: Market drivers and trends for nanocoatings in the energy industry.     
  • Table 160: Revenues for nanocoatings in energy, 2010-2030, US$.             
  • Table 161: Renewable energy nanocoatings product developers. 
  • Table 162: Market drivers and trends for nanocoatings in the oil and gas exploration industry.      
  • Table 163: Desirable functional properties for the oil and gas industry afforded by nanomaterials in coatings.        
  • Table 164: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.              
  • Table 165: Oil and gas nanocoatings product developers.              
  • Table 166: Market drivers and trends for nanocoatings in tools and machining.    
  • Table 167: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.         
  • Table 168: Tools and manufacturing nanocoatings product and application developers.   
  • Table 169: Revenues for nanocoatings in anti-counterfeiting, 2010-2030, US$.     
  • Table 170: Anti-counterfeiting nanocoatings product and application developers.              
  • Table 171: Categorization of nanomaterials.         

 

FIGURES

  • Figure 1: Global revenues for nanocoatings, 2010-2030, millions USD.      
  • Figure 2: Global revenues for nanocoatings 2010-2030, millions USD, by market. 
  • Figure 3: Global revenues for nanocoatings, 2010-2030, millions USD, by type.     
  • Figure 4: Regional demand for nanocoatings, 2010-2020, millions USD.    
  • Figure 5: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards. 
  • Figure 6: Nanocoatings synthesis techniques.      
  • Figure 7: Techniques for constructing superhydrophobic coatings on substrates. 
  • Figure 8: Electrospray deposition.             
  • Figure 9: CVD technique.              
  • Figure 10: Schematic of ALD.       
  • Figure 11: SEM images of different layers of TiO2 nanoparticles in steel surface.  
  • Figure 12: The coating system is applied to the surface.The solvent evaporates. 
  • Figure 13: A first organization takes place where the silicon-containing bonding component bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                
  • Figure 14: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic.               
  • Figure 15: (a) Water drops on a lotus leaf.             
  • Figure 16: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              
  • Figure 17: Contact angle on superhydrophobic coated surface.   
  • Figure 18: Self-cleaning nanocellulose dishware. 
  • Figure 19: SLIPS repellent coatings.          
  • Figure 20: Omniphobic coatings.                
  • Figure 21: Graphair membrane coating. 
  • Figure 22: Antimicrobial activity of Graphene oxide (GO).              
  • Figure 23: Conductive graphene coatings for rotor blades.            
  • Figure 24: Water permeation through a brick without (left) and with (right) “graphene paint” coating.       
  • Figure 25: Graphene heat transfer coating.           
  • Figure 26 Carbon nanotube cable coatings.           
  • Figure 27 Formation of a protective CNT-based char layer during combustion of a CNT-modified coating. 
  • Figure 28: Hydrophobic easy-to-clean coating.    
  • Figure 29: Anti-fogging nanocoatings on protective eyewear.       
  • Figure 30: Silica nanoparticle anti-reflection coating on glass.       
  • Figure 31 Anti-bacterials mechanism of silver nanoparticle coating.           
  • Figure 32: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      
  • Figure 33:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              
  • Figure 34: Titanium dioxide-coated glass (left) and ordinary glass (right). 
  • Figure 35:  Self-Cleaning mechanism utilizing photooxidation.      
  • Figure 36: Schematic of photocatalytic air purifying pavement.   
  • Figure 37: Schematic of photocatalytic indoor air purification filter.           
  • Figure 38: Schematic of photocatalytic water purification.              
  • Figure 39: Types of nanocellulose.            
  • Figure 40: CNF gel.           
  • Figure 41: TEM image of cellulose nanocrystals. 
  • Figure 42: Extracting CNC from trees.      
  • Figure 43: An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates.        
  • Figure 44: CNC slurry.     
  • Figure 45 Nanocoatings market by nanocoatings type, 2010-2030, USD.  
  • Figure 46: Anti-fingerprint nanocoating on glass. 
  • Figure 47: Schematic of anti-fingerprint nanocoatings.    
  • Figure 48: Toray anti-fingerprint film (left) and an existing lipophilic film (right).   
  • Figure 49: Types of anti-fingerprint coatings applied to touchscreens.      
  • Figure 50: Anti-fingerprint nanocoatings applications map.            
  • Figure 51: Revenues for anti-fingerprint coatings, 2010-2030, US$.            
  • Figure 52: Antimicrobial activity of Graphene oxide (GO).              
  • Figure 53. Mechanism of antimicrobial activity of carbon nanotubes.       
  • Figure 54 Anti-bacterials mechanism of silver nanoparticle coating.           
  • Figure 55: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      
  • Figure 56:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              
  • Figure 57. Nano-coated self-cleaning touchscreen.           
  • Figure 58: Potential addressable market for Anti-bacterial nanocoatings by 2030.                
  • Figure 59: Revenues for Anti-bacterial nanocoatings, 2010-2030, US$.      
  • Figure 60: Nanovate CoP coating.              
  • Figure 61: 2000 hour salt fog results for Teslan nanocoatings.      
  • Figure 62: AnCatt proprietary polyaniline nanodispersion and coating structure.  
  • Figure 63: Hybrid self-healing sol-gel coating.      
  • Figure 64: Schematic of anti-corrosion via superhydrophobic surface.      
  • Figure 65: Potential addressable market for anti-corrosion nanocoatings by 2030.               
  • Figure 66: Revenues for anti-corrosion nanocoatings, 2010-2030, US$.     
  • Figure 67: Revenues for abrasion and wear-resistant nanocoatings, 2010-2030, millions US$.        
  • Figure 68: Nanocomposite oxygen barrier schematic.      
  • Figure 69:  Schematic of barrier nanoparticles deposited on flexible substrates.   
  • Figure 70: Revenues for barrier nanocoatings, 2010-2030, US$.   
  • Figure 71: Anti-fouling treatment for heat-exchangers.   
  • Figure 72: Removal of graffiti after application of nanocoating.    
  • Figure 73: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                
  • Figure 74: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2030, millions USD.     
  • Figure 75: Self-cleaning superhydrophobic coating schematic.      
  • Figure 76: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  
  • Figure 77: Revenues for self-cleaning nanocoatings, 2010-2030, US$.        
  • Figure 78: Principle of superhydrophilicity.           
  • Figure 79: Schematic of photocatalytic air purifying pavement.   
  • Figure 80: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 
  • Figure 81: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  
  • Figure 82: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2030, US$.       
  • Figure 83: Markets for UV-resistant nanocoatings, %, 2017.           
  • Figure 84: Potential addressable market for UV-resistant nanocoatings.  
  • Figure 85: Revenues for UV-resistant nanocoatings, 2010-2030, US$.        
  • Figure 86: Flame retardant nanocoating.               
  • Figure 87: Markets for thermal barrier and flame retardant nanocoatings, %.        
  • Figure 88: Potential addressable market for thermal barrier and flame retardant nanocoatings by 2030.    
  • Figure 89: Revenues for thermal barrier and flame retardant nanocoatings, 2010-2030, US$.         
  • Figure 90: Nanocoated surface in comparison to existing surfaces.             
  • Figure 91: NANOMYTE® SuperAi, a Durable Anti-ice Coating.         
  • Figure 92: SLIPS coating schematic.          
  • Figure 93: Carbon nanotube based anti-icing/de-icing device.      
  • Figure 94: CNT anti-icing nanocoating.    
  • Figure 95: Potential addressable market for anti-icing and de-icing nanocoatings by 2030.               
  • Figure 96: Revenues for anti-icing and de-icing nanocoatings, 2010-2030, US$, conservative and optimistic estimates. Conservative estimates in blue, optimistic in red.              
  • Figure 97: Schematic of AR coating utilizing nanoporous coating. 
  • Figure 98: Demo solar panels coated with nanocoatings. 
  • Figure 99: Revenues for anti-reflective nanocoatings, 2010-2030, US$.     
  • Figure 100: Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage. 
  • Figure 101: Stages of self-healing mechanism.    
  • Figure 102: Self-healing mechanism in vascular self-healing systems.        
  • Figure 103: Comparison of self-healing systems. 
  • Figure 104: Self-healing coating on glass.               
  • Figure 105 Nanocoatings market by end user sector, 2010-2030, USD.     
  • Figure 106: Nanocoatings in the aerospace industry, by nanocoatings type %, 2018.          
  • Figure 107: Potential addressable market for nanocoatings in aerospace by 2030.               
  • Figure 108: Revenues for nanocoatings in the aerospace industry, 2010-2030, US$.           
  • Figure 109: Nanocoatings in the automotive industry, by coatings type % 2018.   
  • Figure 110: Potential addressable market for nanocoatings in the automotive sector by 2030.        
  • Figure 111: Revenues for nanocoatings in the automotive industry, 2010-2030, US$.         
  • Figure 112: Mechanism of photocatalytic NOx oxidation on active concrete road.                
  • Figure 113: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.  
  • Figure 114: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.         
  • Figure 115 Smart window film coatings based on indium tin oxide nanocrystals.  
  • Figure 116: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2018.                
  • Figure 117: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  
  • Figure 118: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.      
  • Figure 119: Reflection of light on anti-glare coating for display.    
  • Figure 120: Nanocoating submerged in water.    
  • Figure 121: Phone coated in WaterBlock submerged in water tank.           
  • Figure 122: Self-healing patent schematic.            
  • Figure 123: Self-healing glass developed at the University of Tokyo.          
  • Figure 124: Royole flexible display.           
  • Figure 125: Potential addressable market for nanocoatings in electronics by 2030.              
  • Figure 126: Revenues for nanocoatings in electronics, 2010-2030, US$, conservative and optimistic estimates.      
  • Figure 127: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2018.      
  • Figure 128: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.     
  • Figure 129: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.            
  • Figure 130: Potential addressable market for nanocoatings in the marine sector by 2030.                 
  • Figure 131: Revenues for nanocoatings in the marine sector, 2010-2030, US$.      
  • Figure 132: Anti-bacertial sol-gel nanoparticle silver coating.        
  • Figure 133: Nanocoatings in medical and healthcare, by coatings type %, 2018.    
  • Figure 134: Potential addressable market for nanocoatings in medical & healthcare by 2030.     
  • Figure 135: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.         
  • Figure 136: Nanocoatings in military and defence, by nanocoatings type %, 2018.               
  • Figure 137: Potential addressable market nanocoatings in military and defence by 2030.  
  • Figure 138: Revenues for nanocoatings in military and defence, 2010-2030, US$. 
  • Figure 139: Nanocomposite oxygen barrier schematic.    
  • Figure 140: Oso fresh food packaging incorporating antimicrobial silver.  
  • Figure 141: Potential addressable market for nanocoatings in packaging by 2030.               
  • Figure 142: Revenues for nanocoatings in packaging, 2010-2030, US$.      
  • Figure 143: Omniphobic-coated fabric.   
  • Figure 144: Work out shirt incorporating ECG sensors, flexible lights and heating elements.           
  • Figure 145: Nanocoatings in textiles and apparel, by coatings type %, 2018.          
  • Figure 146: Potential addressable market for nanocoatings in textiles and apparel by 2030.       
  • Figure 147: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.  
  • Figure 148: Self-Cleaning Hydrophobic Coatings on solar panels. 
  • Figure 149: Znshine Graphene Series solar coatings.         
  • Figure 150: Nanocoating for solar panels.              
  • Figure 151: Nanocoatings in renewable energy, by coatings type %.          
  • Figure 152: Potential addressable market for nanocoatings in renewable energy by 2030.                
  • Figure 153: Revenues for nanocoatings in energy, 2010-2030, US$.            
  • Figure 154: Oil-Repellent self-healing nanocoatings.         
  • Figure 155: Nanocoatings in oil and gas exploration, by coatings type %. 
  • Figure 156: Potential addressable market for nanocoatings in oil and gas exploration by 2030.       
  • Figure 157: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.            
  • Figure 158: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.        
  • Figure 159: Security tag developed by Nanotech Security.             
  • Figure 160: Revenues for nanocoatings in anti-counterfeiting, 2010-2030, US$.    
  • Figure 161. Lab tests on DSP coatings.     
  • Figure 162: Self-healing mechanism of SmartCorr coating.             
  • Figure 163. Microlyte® Matrix bandage for surgical wounds.         
  • Figure 164: Carbon nanotube paint product.        
  • Figure 165. NanoSeptic surfaces.              
  • Figure 166: Nippon Paper Industries’ adult diapers.          
  • Figure 167: 2 wt.% CNF suspension.       
  • Figure 168. BiNFi-s Dry Powder. 
  • Figure 169. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          
  • Figure 170: Silk nanofiber (right) and cocoon of raw material.       

 

 

The Nanocoatings Report 2020
The Nanocoatings Report 2020
PDF download and by email.

The Nanocoatings Report 2020
The Nanocoatings Report 2020
Print edition (including tracked delivery).

The Nanocoatings Report 2020
The Nanocoatings Report 2020
PDF and print edition.

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

Share.

Comments are closed.